點(diǎn)(-4,3)相應(yīng)的極坐標(biāo)是

[  ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,焦點(diǎn)到其相應(yīng)準(zhǔn)線的距離是3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過(guò)點(diǎn)A(4,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N,使得|AM|•|AN|=
81
7
?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(x噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
x 3 4 5 6
y 2.5 3 4 4.5
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的
線性回歸方程
?
y
=bx+a

(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,
試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京東城2000~2001學(xué)年度第二學(xué)期形成性測(cè)試 高二數(shù)學(xué)(四)參數(shù)方程、極坐標(biāo) 題型:013

點(diǎn)(-4,3)相應(yīng)的極坐標(biāo)是

[  ]

查看答案和解析>>

同步練習(xí)冊(cè)答案