在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知
(1)求角A的大;
(2)若a=6,求b+c的取值范圍.
【答案】分析:(1)利用正弦定理化簡已知的等式,根據(jù)sinB不為0,兩邊同時除以sinB后,得到sinA的值,由A為銳角三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(2)利用正弦定理得到===2R,把a(bǔ)與sinA的值代入求出2R的值,進(jìn)而表示出b和c,將表示出的b,c代入表示出b+c,并由A的度數(shù),利用三角形的內(nèi)角和定理得到B+C的度數(shù),用C表示出B,代入表示出的b+c,再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,整理后提取12,再利用特殊角的三角函數(shù)值及兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),根據(jù)B的范圍求出這個角的范圍,可得出此時正弦函數(shù)的值域,進(jìn)而確定出b+c的范圍.
解答:解:(1)由得:,
又sinB≠0,
,
由銳角△ABC得:A=60°;
(2)∵a=6,A=60°,設(shè)三角形外接圓的半徑為R,
∴根據(jù)正弦定理得:===2R,又
∴2R=4,
∴b=4sinB,c=4sinC,
又A=60°,∴B+C=120°,即C=120°-B,

=4(sinB+sin120°cosB-cos120°sinB)
=4(sinB+cosB+sinB)
=6sinB+6cosB
=12(sinB+cosB)
=12sin(B+30°),
∵△ABC為銳角三角形,
∴B∈(30°,90°),
∴B+30°∈(60°,120°)
,

點(diǎn)評:此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大;
(Ⅱ)當(dāng)c=1時,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達(dá)式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當(dāng)c=2a,且b=3
7
時,求a及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案