已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且4,成等比數(shù)列,向量a=(-1,1),b=(1,1),點(diǎn)滿足
(1)求數(shù)列的通項(xiàng)公式。
(2)試判斷點(diǎn)是否共線,并說明理由。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知正項(xiàng)數(shù)列{}的前n項(xiàng)和為對(duì)任意,
都有。(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若是遞增數(shù)列,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,
(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;
(2)求數(shù)列的前n項(xiàng)和;
(3)證明:不等式 對(duì)任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項(xiàng)數(shù)列,∴ ∴
又n=1時(shí),
∴ ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對(duì)任意的,都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊市高三第三次月考理科數(shù)學(xué) 題型:解答題
( 12分)已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前n項(xiàng)的和,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:0103 月考題 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com