給出下列三個結(jié)論:
①命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0 無實數(shù),則m≤0”.
②若p∧q為假命題,則p,q均為假命題.
③若命題p:?x0∈R,數(shù)學(xué)公式+x0+1<0,則-p:?x∈R,x2+x+1≥0.
其中正確結(jié)論的個數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
分析:利用原命題與其逆否命題之間的等價關(guān)系可判斷①;
利用復(fù)合命題的真值表可判斷②
利用命題的否定可判斷③.
解答:①由若p則q?若¬q則¬p知,
命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0 無實數(shù),則m≤0”,
故①正確;
②若p∧q為假命題,則p,q至少有一個為假命題,所以若p∧q為假命題,則p,q均為假命題,錯誤;
③由命題的否定知,命題p:?x0∈R,+x0+1<0的否定為:¬p:?x∈R,x2+x+1≥0正確,
所以正確結(jié)論有2個.
故選C.
點評:本題考查命題的真假判斷與應(yīng)用,掌握命題之間的等價關(guān)系及復(fù)合命題的真值表及命題的否定是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)fn(x)=xn+x-1,其中n∈N*,且n≥2,給出下列三個結(jié)論:
①函數(shù)f3(x)在區(qū)間(
1
2
,1)內(nèi)不存在零點;
②函數(shù)f4(x)在區(qū)間(
1
2
,1)內(nèi)存在唯一零點;
③設(shè)xn(n>4)為函數(shù)fn(x)在區(qū)間(
1
2
,1)內(nèi)的零點,則xn<xn+1
其中所有正確結(jié)論的序號為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個結(jié)論:(1)若命題p為真命題,命題?q為真命題,則命題“p∧q”為真命題;
(2)命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0”;
(3)命題“?x∈R,2x>0”的否定是“?x∈R,2x≤0”.
則以上結(jié)論正確的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個結(jié)論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結(jié)論個數(shù)是( 。﹤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)曲線C是平面內(nèi)到定點F(0,1)和定直線l:y=-1的距離之和等于4的點的軌跡,給出下列三個結(jié)論:
①曲線C關(guān)于y軸對稱;
②若點P(x,y)在曲線C上,則|y|≤2;
③若點P在曲線C上,則1≤|PF|≤4.
其中,所有正確結(jié)論的序號是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濱州一模)給出下列三個結(jié)論:
①命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0 無實數(shù),則m≤0”.
②若p∧q為假命題,則p,q均為假命題.
③若命題p:?x0∈R,
x
2
0
+x0+1<0,則-p:?x∈R,x2+x+1≥0.
其中正確結(jié)論的個數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊答案