精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

已知圓C1的方程為,定直線l的方程為.動圓C與圓C1外切,且與直線l相切.

(Ⅰ)求動圓圓心C的軌跡M的方程;

(II)斜率為k的直線l與軌跡M相切于第一象限的點P,過點P作直線l的垂線恰好經過點A(0,6),并交軌跡M于異于點P的點Q,記為軌跡M與直線PQ圍成的封閉圖形的面積,求的值.

 

 

【答案】

解(Ⅰ)設動圓圓心C的坐標為,動圓半徑為R,則

          ,且    ————2分

    可得

由于圓C1在直線l的上方,所以動圓C的圓心C應該在直線l的上方,所以有,從而得,整理得,即為動圓圓心C的軌跡M的方程.                                            ————5分

(II)如圖示,設點P的坐標為,則切線的斜率為,可得直線PQ的斜率為,所以直線PQ的方程為.由于該直線經過點A(0,6),所以有,得.因為點P在第一象限,所以,點P坐標為(4,2),直線PQ的方程為.                   ——————9分

把直線PQ的方程與軌跡M的方程聯立得,解得或4,可得點Q的坐標為.所以

       

          .  ——————13分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案