【題目】已知拋物線的焦點
在直線
上,且拋物線
截直線
所得的弦
的長為
.
(Ⅰ)求拋物線的方程和
的值.
(Ⅱ)以弦為底邊,以
軸上點
為頂點的三角形
面積為
,求點
坐標.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
且平行于
的直線與直線
交于點
.求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與
、
軸交于
、
兩點.
(Ⅰ)若點、
分別是雙曲線
的虛軸、實軸的一個端點,試在平面上找兩點
、
,使得雙曲線
上任意一點到
、
這兩點距離差的絕對值是定值.
(Ⅱ)若以原點為圓心的圓
截直線
所得弦長是
,求圓
的方程以及這條弦的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
,
=2.718………),
(I) 當時,求函數(shù)
的單調區(qū)間;
(II)當時,不等式
對任意
恒成立,
求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為
,
,且對任意正整數(shù)n,點(
,
)在直線
上.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù)λ,使得數(shù)列{ }為等差數(shù)列?若存在,求出λ的值;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓
的直徑,點
是圓
上異于
、
的點,直線度
平面
,
、
分別是
、
的中點.
(Ⅰ)設平面與平面
的交線為
,求直線
與平面
所成角的余弦值;
(Ⅱ)設(Ⅰ)中的直線與圓
的另一個交點為點
,且滿足
,
,當二面角
的余弦值為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設計, 可以使得工廠產(chǎn)生的噪聲對居民的影響最小(即工廠與村莊的距離最遠).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com