在平面直角坐標(biāo)系內(nèi),到點A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和最小的點的坐標(biāo)是   
【答案】分析:如圖,設(shè)平面直角坐標(biāo)系中任一點P,利用三角形中兩邊之和大于第三邊得PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,從而得到四邊形ABCD對角線的交點Q即為所求距離之和最小的點.再利用兩點式方程求解對角線所在的直線方程,聯(lián)立方程組求交點坐標(biāo)即可.
解答:解:如圖,設(shè)平面直角坐標(biāo)系中任一點P,
P到點A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和為:PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,
故四邊形ABCD對角線的交點Q即為所求距離之和最小的點.
∵A(1,2),B(1,5),C(3,6),D(7,-1),
∴AC,BD的方程分別為:,
即2x-y=0,x+y-6=0.
解方程組得Q(2,4).
故答案為:(2,4).
點評:本小題主要考查直線方程的應(yīng)用、三角形的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、在平面直角坐標(biāo)系內(nèi),表中的方程表示什么圖形?畫出這些圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于下列命題:
①已知集合A={正四棱柱},B={長方體},則A∩B=B;
②函數(shù)y=
1
lgx
在(0,+∞)為單調(diào)函數(shù);
③在平面直角坐標(biāo)系內(nèi),點M(|a|,|a-3|)與N(cosα,sinα)在直線x+y-2=0的異側(cè);
④若
1
a
<1
,則a<0或a>1;
⑤互為反函數(shù)的兩個不同函數(shù)的圖象若有交點,則交點一定在直線y=x上.其中正確命題的序號為
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博一模)在平面直角坐標(biāo)系內(nèi)已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴大到原來的
2
倍后得到點Q(x,
2
y),且滿足
AQ
BQ
=1.
(Ⅰ)求動點P所在曲線C的方程;
(Ⅱ)過點B作斜率為-
2
2
的直線l交曲線C于M、N兩點,且
OM
+
ON
+
OH
=
0
,試求△MNH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門二模)在平面直角坐標(biāo)系內(nèi),動圓C過定點F(1,0),且與定直線x=-1相切.
(1)求動圓圓心C的軌跡C2的方程;
(2)中心在O的橢圓C1的一個焦點為F,直線l過點M(4,0).若坐標(biāo)原點O關(guān)于直線l的對稱點P在曲線C2上,且直線l與橢圓C1有公共點,求橢圓C1的長軸長取得最小值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)定義域為R的函數(shù)f(x)=
|x+1|,x≤0
x2-2x+1,x>0

(Ⅰ)在平面直角坐標(biāo)系內(nèi)作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(Ⅱ)若方程f(x)+2a=0有兩個解,求出a的取值范圍(只需簡單說明,不需嚴(yán)格證明).
(Ⅲ)設(shè)定義為R的函數(shù)g(x)為奇函數(shù),且當(dāng)x>0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案