已知sinθ•cosθ=
1
8
,且
π
4
<θ<
π
2
,則cosθ-sinθ的值為
 
分析:根據(jù)θ的范圍,確定cosθ,sinθ的大小,利用平方可以求出cosθ-sinθ的值.
解答:解:因為
π
4
<θ<
π
2
,所以cosθ-sinθ<0,所以(cosθ-sinθ)2=1-2sinθ•cosθ=
3
4

所以cosθ-sinθ=-
3
2

故答案為:-
3
2
點評:本題是基礎題,考查三角函數(shù)中的恒等變換應用,根據(jù)角的范圍,確定三角函數(shù)值的范圍,是本題的關鍵,是解題的突破口,三角函數(shù)的平方關系式的應用,為本題的化簡求值,起到簡化過程,簡潔解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
7
13
(0<α<π),則tanα=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=
2
2
(0<θ<π),則cos2θ的值為
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步練習冊答案