15.已知$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(2,0),$\overrightarrow{c}$=(-1,-2),$\overrightarrownxfx7fl$=2$\overrightarrow{a}$-3$\overrightarrow$+$\overrightarrow{c}$,則向量$\overrightarrowf5x3zxx$的坐標為(-3,-8).

分析 進行向量坐標的加法、減法,及數(shù)乘運算即可.

解答 解:$\overrightarrowjr9bvhx=2(2,-3)-3(2,0)+(-1,-2)=(-3,-8)$.
故答案為:(-3,-8).

點評 考查向量坐標的加法、減法,以及數(shù)乘運算,理解向量坐標的定義.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=x3-x的奇偶性,正確的說法是( 。
A.f(x)是奇函數(shù)但不是偶函數(shù)B.f(x)是偶函數(shù)但不是奇函數(shù)
C.f(x)是奇函數(shù)又是偶函數(shù)D.f(x)既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知$\overrightarrow{a}$=3$\overrightarrow{e}$1-5$\overrightarrow{e}$2 ,$\overrightarrow$=$\frac{1}{5}$$\overrightarrow{e}$1-$\frac{1}{3}$$\overrightarrow{e}$2,則$\overrightarrow{a}$與$\overrightarrow$的關(guān)系是$\overrightarrow{a}=15\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知點A(a,0),B(b,0),則向量|$\overrightarrow{AB}$|=(  )
A.|a-b|B.a-bC.b-aD.$\sqrt{{a}^{2}+^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.化簡($\overrightarrow{MN}$-$\overrightarrow{PO}$)-($\overrightarrow{MP}$+$\overrightarrow{PN}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知甲班有48人,現(xiàn)學校用分層抽樣的方法從甲、乙兩班名抽取了部分同學某項測試的成績,并作出了莖葉圖及頻率分布直方圖(按區(qū)間[0,5),[5,10),[25,30]分段),但莖葉圖中甲班的成績被墨水沾污(如圖1),但甲班樣本成績的頻率分布直方圖完好如圖2,且甲班樣本成績的中位數(shù)為14,平均數(shù)與乙班樣本成績k的平均數(shù)恰好相等.則甲班樣本方差及乙班人數(shù)分別是(  )
A.41.75,36B.42,36C.2.3,6D.45.75,36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.三角形與四面體有著類似的特征.如圖1,△ABC中,若AD是∠BAC的角平分線,則$\frac{DB}{DC}=\frac{AB}{AC}$.依此類比:如圖2,三棱錐S-PQR中,點M在QR上,若二面角Q-SP-M的大小等于二面角R-SP-M的大小,則$\frac{MQ}{MR}$=$\frac{{S}_{△PSQ}}{{S}_{△PSR}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知f(x)是定義在R上的奇函數(shù),又是周期為2的周期函數(shù),當x∈[0,1)時,f(x)=2x-1,則f(-log26)的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(mx+6)在(1,3)上是增函數(shù),則實數(shù)m的取值范圍是[-2,0).

查看答案和解析>>

同步練習冊答案