A. | 4$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
分析 可求得拋物線y2=12x的焦點(diǎn)坐標(biāo),從而可求得b2及雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)坐標(biāo),利用點(diǎn)到直線間的距離公式即可.
解答 解:∵拋物線y2=12x的焦點(diǎn)坐標(biāo)為(3,0),
依題意,4+b2=9,
∴b2=5.
∴雙曲線的方程為:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1,
∴其漸近線方程為:y=±$\frac{\sqrt{5}}{2}$x,
∴雙曲線的一個(gè)焦點(diǎn)F(3,0)到其漸近線的距離等于d=$\frac{|±\sqrt{5}×3-0|}{\sqrt{5+4}}$=$\sqrt{5}$.
故選:B.
點(diǎn)評(píng) 本題考查雙曲線的簡單性質(zhì),求得b2的值是關(guān)鍵,考查點(diǎn)到直線間的距離公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-sinx | B. | x-sinx | C. | sinx+xcosx | D. | cosx-xsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com