【題目】已知函數(shù)(其中).
(1)討論函數(shù)的極值;
(2)對任意,恒成立,求的取值范圍.
【答案】(1)答案不唯一,具體見解析(2)
【解析】
(1)求出函數(shù)的定義域、導函數(shù),對和分兩種情況討論可得;
(2)由(1)知當時,不符合題意;當時,的最大值為要使恒成立,即是使成立,令利用導數(shù)分析其單調(diào)性,即可求得的取值范圍.
(1)的定義域為,,
①當時,,所以在上是減函數(shù),無極值.
②當時,令,得,
在上,,是增函數(shù);在上,,是減函數(shù).
所以有極大值,無極小值.
(2)由(1)知,①當時,是減函數(shù),令,則,
,不符合題意,
②當時,的最大值為,
要使得對任意,恒成立,
即要使不等式成立,
則有解.
令,所以
令,由,得.
在上,,則在上是增函數(shù);
在上,,則在上是減函數(shù).
所以,即,
故在上是減函數(shù),又,
要使成立,則,即的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)在平面直角坐標系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點,求△ABM面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù),數(shù)列的前項和為, , ;
(1)求數(shù)列的通項公式;
(2)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;
(3)若, ,對于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)當時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點,,且不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;
(2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線與曲線兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為,直線與軸的交點為,與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段 的延長線上,且滿足,點的軌跡為.
(1)求曲線,的極坐標方程;
(2)設(shè)點的極坐標為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com