【題目】如圖所示,橢圓C)的離心率為,左、右焦點分別為,橢圓C過點T為直線上的動點,過點T作橢圓C的切線,A,B為切點.

1)求證:A,,B三點共線;

2)過點作一條直線與曲線C交于P,Q兩點.P,Q作直線的垂線,垂足依次為M,N.求證:直線交于定點.

【答案】1)見解析;(2)見解析

【解析】

1)先寫出切線,的方程,將代入即可得到直線的方程;

2)當(dāng)PQ的斜率不存在時,易得直線交于定點,當(dāng)PQ的斜率存在時,分別寫出直線,直線的方程,結(jié)合對稱性以及斜率不存在的特殊情況,可知定點一定在x軸上,結(jié)合韋達(dá)定理即可解決.

1)由已知得,,又,解得,所以橢圓C的方程為.

由于,設(shè),,,則切線,的方程分別為,

由于切線,過點,所以,,

,,所以直線的方程為.

已知直線過點,所以A,,B三點共線.

2)當(dāng)軸時,易得,,,

直線PN的方程為,即

直線MQ的方程為,即,

直線交于定點.

當(dāng)不垂直于x軸時,設(shè)過點的直線為,聯(lián)立,

.

,

設(shè),,則,,

P,Q作直線的垂線,垂足依次為M,N,則,,

所以直線,令,化為

.

所以直線,令,化為.

因為,

所以,

直線交于定點.

綜上,直線交于定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標(biāo)準(zhǔn)為:首重(重量小于等于)收費元,續(xù)重(不足). (:一個包裹重量為則需支付首付元,續(xù)重元,一共元快遞費用)

1)若你有三件禮物重量分別為,要將三個禮物分成兩個包裹寄出(:合為一個包裹,一個包裹),那么如何分配禮物,使得你花費的快遞費最少?

2)為了解該快遞點2019年的攬件情況,在2019年內(nèi)隨機(jī)抽查了天的日攬收包裹數(shù)(單位:),得到如下表格:

包裹數(shù)(單位:)

天數(shù)()

現(xiàn)用這天的日攬收包裹數(shù)估計該快遞點2019年的日攬收包裏數(shù).若從2019年任取天,記這天中日攬收包裹數(shù)超過件的天數(shù)為隨機(jī)變量的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如滴滴打車”“神州專車等網(wǎng)約車服務(wù)在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了個城市,分別收集和分析了網(wǎng)約車的兩項指標(biāo)數(shù),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)數(shù)

指標(biāo)數(shù)

經(jīng)計算得:

1)試求間的相關(guān)系數(shù),并利用說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(,則線性相關(guān)程度很高,可用線性回歸模型擬合);

2)立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為時,指標(biāo)數(shù)的估計值.

附:相關(guān)公式:,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點,相交于點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有ab兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.

1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,.

(Ⅰ)求證:平面

(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線,

1)求曲線的直角坐標(biāo)方程,并判斷兩曲線的形狀;

2)若曲線交于、兩點,求兩交點間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是直線上的動點,過點的直線、與拋物線相切,切點分別是、.

1)證明:直線過定點;

2)以為直徑的圓過點,求點的坐標(biāo)及圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案