A. | $\lim_{n→+∞}{S_n}=-1$ | |
B. | $\lim_{n→+∞}{S_n}=2015$ | |
C. | $\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*) | |
D. | 以上結(jié)論都不對 |
分析 推導(dǎo)出Sn=2015-($\frac{1}{3}$)n-2016,由此能求出$\underset{lim}{n→∞}$Sn.
解答 解:∵數(shù)列{an},對于任意的正整數(shù)n,
${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,設(shè)Sn表示數(shù)列{an}的前n項和.
∴a1=a2=a3=…=a2016=1,
${a}_{2017}=-\frac{2}{3}$,${a}_{2018}=-\frac{2}{9}$,${a}_{2019}=-\frac{2}{27}$,…,
∴Sn=2016+$\frac{-\frac{2}{3}[1-(\frac{1}{3})^{n-2016}]}{1-\frac{1}{3}}$=2016-1+($\frac{1}{3}$)n-2016=2015+($\frac{1}{3}$)n-2016,
$\underset{lim}{n→∞}$Sn[2015+($\frac{1}{3}$)n-2016]=2015.
故選:B.
點評 本題考查數(shù)列的極限的求法,是中檔題,解題時要認真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值1 | B. | 圖象關(guān)于直線x=-$\frac{π}{6}$對稱 | ||
C. | 在區(qū)間(-$\frac{π}{6}$,0)上單調(diào)遞增 | D. | 周期為π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | [0,+∞) | C. | (0,+∞) | D. | (-∞,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com