【題目】拋物線:過點.
(1)求拋物線的方程;
(2)設為軸上一點,為拋物線上任意一點,求的最小值;
(3)過拋物線的焦點,作相互垂直的兩條弦和,求的最小值.
【答案】(1)(2)當時,的最小值為;當時,的最小值為(3)32
【解析】
(1)將點代入拋物線方程,解出,即可求出;
(2)設出點,根據(jù)距離公式表示出,再根據(jù)二次函數(shù)知識即可求出;
(3)由題可知兩直線斜率都存在,所以設:,:,將直線方程與拋物線方程聯(lián)立,利用韋達定理求出,,根據(jù)弦長公式即可求出和的長,然后根據(jù)基本不等式即可求出.
(1)將點代入拋物線方程,得,解得,
所以拋物線的方程為:.
(2)設點,則,.
所以.
設,對稱軸為,
當即時,在上單調(diào)遞增,所以,即的最小值為;
當時,在上單調(diào)遞減,在上單調(diào)遞增,所以,的最小值為.
綜上,當時,的最小值為;當時,的最小值為.
(3)由題可知兩直線斜率都存在,設,,
:,:,
由,化簡得,,所以,
同理可得,,即,,
故.
即的最小值為32.
科目:高中數(shù)學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的參數(shù)方程;
(2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大城市一家餐飲企業(yè)為了了解外賣情況,統(tǒng)計了某個送外賣小哥某天從9:00到21:00這個時間段送的50單外賣.以2小時為一時間段將時間分成六段,各時間段內(nèi)外賣小哥平均每單的收入情況如下表,各時間段內(nèi)送外賣的單數(shù)的頻率分布直方圖如下圖.
時間區(qū)間 | ||||||
每單收入(元) | 6 | 5.5 | 6 | 6.4 | 5.5 | 6.5 |
(Ⅰ)求頻率分布直方圖中的值,并求這個外賣小哥送這50單獲得的收入;
(Ⅱ)在這個外賣小哥送出的50單外賣中男性訂了25單,且男性訂的外賣中有20單帶飲品,女性訂的外賣中有10單帶飲品,請完成下面的列聯(lián)表,并回答是否有的把握認為“帶飲品和男女性別有關”?
帶飲品 | 不帶飲品 | 總計 | |
男 | |||
女 | |||
總計 |
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,平面平面ABC,,.
(1)若,求證:平面平面PBC;
(2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總人數(shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記無窮數(shù)列的前項中最大值為,最小值為,令.
(1)若,寫出,,,的值;
(2)設,若,求的值及時數(shù)列的前項和;
(3)求證:“數(shù)列是等差數(shù)列”的充要條件是“數(shù)列是等差數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com