已知:函數(shù)f(x)=ax2+2bx(a,b∈R+
(1)若a=b=1,求:不等式log2f(x)≤3;
(2)若f(1)=1,求:
1
a
+
1
b
的最小值.
(1)當(dāng)a=b=1時(shí),f(x)=x2+2x
則:log2f(x)≤3?log2(x2+2x)≤log28
?
x2+2x>0
x2+2x≤8
?
x<-2或x>0
-4≤x≤2
?-4≤x<-2或0<x≤2
;
(2)當(dāng)f(1)=1時(shí),有a+2b=1
則:
1
a
+
1
b
=
a+2b
a
+
a+2b
b
=3+
2b
a
+
a
b

∵a,b∈R+,∴
2b
a
+
a
b
≥2
2

當(dāng)且僅當(dāng)
2b
a
=
a
b
,即:a=
2
b
等號(hào)成立
1
a
+
1
b
=3+
2b
a
+
a
b
≥3+2
2

即:(
1
a
+
1
b
)min=3+2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?1,1),當(dāng)x∈(0,1)時(shí),f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個(gè)不同的極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案