精英家教網 > 高中數學 > 題目詳情
2014年2月21日,《中共中央關于全面深化改革若干重大問題的決定》明確:堅持計劃生育的基本國策,啟動實施一方是獨生子女的夫婦可生育兩個孩子的政策.為了解某地區(qū)城鎮(zhèn)居民和農村居民對“單獨兩孩”的看法,某媒體在該地區(qū)選擇了3600人調查,就是否贊成“單獨兩孩”的問題,調查統(tǒng)計的結果如下表:

贊成
反對
無所謂
農村居民
2100人
120人
y人
城鎮(zhèn)居民
600人
x人
z人
已知在全體樣本中隨機抽取1人,抽到持“反對”態(tài)度的人的概率為0.05.
(1)現(xiàn)在分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“反對”態(tài)度的人中,用分層抽樣的方法抽取6人,按每組3人分成兩組進行深入交流,求第一組中農村居民人數的分布列和數學期望.
(1) 72;(2)參考解析

試題分析:(1) 由于在全體樣本中隨機抽取1人,抽到持“反對”態(tài)度的人的概率為0.05.所以可得到持反對的人數為180人.再根據贊成的人數即可得到持“無所謂”態(tài)度的人數.按分層抽樣即可得,持“無所謂”態(tài)度的人占的百分比,即可得應該抽取的人數.
(2)由(1)得到城鎮(zhèn)居民中持反對的人數,由分層抽樣可得,農村和城鎮(zhèn)各抽取持反對的人數.作出分布列,即可求出數學期望.
試題解析:(1)∵抽到持“反對”態(tài)度的人的概率為0.05,∴=0.05,解得x=60.
∴ 持“無所謂”態(tài)度的人數共有3600-2100-120-600-60=720.
∴ 應在“無所謂”態(tài)度抽取720×=72人.
(2)由(I)知持“反對”態(tài)度的一共有180人,
∴ 在所抽取的6人中,農村居民為=4人,城鎮(zhèn)居民為=2人,
于是第一組農村居民人數ξ=1,2,3,  
P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,
即ξ的分布列為:
ξ
1
2
3
P


∴ Eξ=1×+2×+3×=2. 
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某校舉行中學生“日常生活小常識”知識比賽,比賽分為初賽和復賽兩部分,初賽采用選手從備選題中選一題答一題的方式進行;每位選手最多有5次答題機會,選手累計答對3題或答錯3題即終止比賽,答對3題者直接進入復賽,答錯3題者則被淘汰.已知選手甲答對每個題的概率均為,且相互間沒有影響.
(1)求選手甲進入復賽的概率;
(2)設選手甲在初賽中答題的個數為,試求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

隨機變量ξ的分布列如下
ξ
-1
0
1
P
a
b
c
 
其中a,b,c成等差數列,若E(ξ)=,則D(ξ)=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一盒中裝有零件12個,其中有9個正品,3個次品,從中任取一個,如果每次取出次品就不再放回去,再取一個零件,直到取得正品為止.求在取得正品之前已取出次品數的期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.
(1)假設n=4,在第一大塊地中,種植品種甲的小塊地的數目記為X,求X的分布列和數學期望;
(2)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在各小塊地上的每公頃產量(單位:kg/hm2)如下表:
品種甲
403
397
390
404
388
400
412
406
品種乙
419
403
412
418
408
423
400
413
分別求品種甲和品種乙的每公頃產量的樣本平均數和樣本方差;根據試驗結果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若X是離散型隨機變量,P(X=x1)=,P(X=x2)=,且x1<x2,又已知E(X)=,V(X)=,則x1+x2的值為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

第16屆亞運會于2010年11月12日在廣州舉辦,運動會期間來自廣州大學和中山大學的共計6名大學生志愿者將被隨機平均分配到跳水、籃球、體操這三個比賽場館服務,且跳水場館至少有一名廣州大學志愿者的概率是.
(1)求6名志愿者中來自廣州大學、中山大學的各有幾人?
(2)設隨機變量X為在體操比賽場館服務的廣州大學志愿者的人數,求X的分布列及均值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設A,B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗.每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效.若在一個試驗組中,服用A有效的小白鼠的只數比服用B有效的只數多,就稱該試驗組為甲類組.設每只小白鼠服用A有效的概率為,服用B有效的概率為.
(1)求一個試驗組為甲類組的概率;
(2)觀察三個試驗組,用X表示這三個試驗組中甲類組的個數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若離散型隨機變量的分布列如下:
        
0            
1        
     
               
0.4        
的方差(     )
A.0.6             B.0.4             C.0.24               D.1

查看答案和解析>>

同步練習冊答案