【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)令,區(qū)間, 為自然對(duì)數(shù)的底數(shù)。
(ⅰ)若函數(shù)在區(qū)間上有兩個(gè)極值,求實(shí)數(shù)的取值范圍;
(ⅱ)設(shè)函數(shù)在區(qū)間上的兩個(gè)極值分別為和,
求證: .
【答案】(1)增區(qū)間,減區(qū)間,(2)詳見(jiàn)解析
【解析】試題分析:(1)求導(dǎo)寫(xiě)出單調(diào)區(qū)間;(2)(。函數(shù) 在區(qū)間D上有兩個(gè)極值,等價(jià)于 在 上有兩個(gè)不同的零點(diǎn),令 ,得 ,通過(guò)求導(dǎo)分析得 的范圍為;(ⅱ) ,得,由分式恒等變換得,得,要證明 ,只需證 ,即證,
令 , ,通過(guò)求導(dǎo)得到 恒成立,得證。
試題解析:
(1)當(dāng)時(shí), ,
所以
若 ,則 所以的單調(diào)區(qū)增區(qū)間為
若則所以的單調(diào)區(qū)增區(qū)間為
(2)(。因?yàn)?/span> ,
所以 , ,
若函數(shù) 在區(qū)間D上有兩個(gè)極值,等價(jià)于 在 上有兩個(gè)不同的零點(diǎn),
令 ,得 ,
設(shè) ,令
|
|
|
| ||
| 大于0 | 0 | 小于0 | ||
0 | 增 |
| 減 |
|
所以 的范圍為
(ⅱ)由(。知,若函數(shù)在區(qū)間D上有兩個(gè)極值分別為 和,不妨設(shè) ,則 ,
所以
即 ,
要證 ,只需證 ,即證,
令 ,即證 ,即證 ,
令 ,因?yàn)?/span> ,
所以 在上單調(diào)增, ,所以 ,
即 所以 ,得證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數(shù)f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx> ﹣ 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),
①求曲線在點(diǎn)處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為三個(gè)銳角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)與向量 =(cosA﹣sinA,1+sinA)是共線向量. (Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 ,下面說(shuō)法錯(cuò)誤的是( )
A.若 與 共線,則 ⊙ =0
B. ⊙ = ⊙
C.對(duì)任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線x+y-1=0被圓(x+1)2+y2=3截得的弦長(zhǎng)等于( )
A. B. 2
C. 2 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運(yùn)動(dòng),線段PQ中點(diǎn)為M(x0 , y0),且x0+y0>4,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE∥平面ADP;
(2)求直線BE與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com