若tan(2x-
π
6
)≤1,則x的取值范圍為:
 
考點(diǎn):正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由tan(2x-
π
6
)≤1,可得kπ-
π
2
<2x-
π
6
≤kπ+
π
4
,k∈z,由此求得x的范圍.
解答: 解:由tan(2x-
π
6
)≤1,可得kπ-
π
2
<2x-
π
6
≤kπ+
π
4
,k∈Z,
求得
2
-
π
6
<x≤
2
+
24
,∴x的取值范圍為(
2
-
π
6
,
2
+
24
],k∈Z,
故答案為:(
2
-
π
6
,
2
+
24
],k∈Z.
點(diǎn)評(píng):本題主要考查正切函數(shù)的圖象特征,解三角不等式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
p
=(2,-3)
q
=(x,6)
,且
p
q
,則|
p
+
q
|
的值為(  )
A、
13
B、13
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸進(jìn)線與實(shí)軸的夾角為60°,則雙曲線的離心率為(  )
A、
2
3
3
B、2
C、2
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a,b的值
(1)l1⊥l2,且l1過(guò)(1,1)點(diǎn);
(2)l1∥l2,且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線x2-
y2
2
=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該橢圓的標(biāo)準(zhǔn)方程是(  )
A、
x2
x
+y2=1
B、
x2
3
+
y2
4
=1
C、
x2
9
+
y2
6
=1
D、
x2
25
+
y2
20
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆骰子投拋的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線l1:ax+by=2,l2:x+2y=2.直線l1與l2平行的概率為P1,相交的概率為P2,則P1-P2的值為( 。
A、
31
36
B、
5
6
C、-
31
36
D、-
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log93+(
8
27
 -
1
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
m
,
n
是兩個(gè)非零向量,且
m
=(x1,y1),
n
=(x2,y2),則以下等式中與
m
n
=0等價(jià)的個(gè)數(shù)有( 。
m
=0或
n
=0或
m
n
②x1x2=-y1y2③|
m
+
n
|=|
m
-
n
|④|
m
+
n
|=
m2+n2
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足yn=2logaxn(a>0且a≠1),已知y4=17,y7=11.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)問(wèn)數(shù)列{yn}的前多少項(xiàng)的和最大,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案