分析 由cosA與cosB的值,利用同角三角函數(shù)間的基本關(guān)系求出sinA和sinB的值,進而求出sinC的值,再由b的長,利用正弦定理求出c的長即可.
解答 解:∵$cosA=\frac{3}{5},cosB=\frac{5}{13}$,
∴sinA=$\frac{4}{5}$,sinB=$\frac{12}{13}$,
∴sinC=sin(A+B)=sinAcoB+cosAsinB=$\frac{4}{5}×\frac{5}{13}$+$\frac{3}{5}×\frac{12}{13}$=$\frac{56}{65}$,
又∵AC=3,
∴由正弦定理:$\frac{AC}{sinB}=\frac{AB}{sinC}$,可得:AB=$\frac{ACsinC}{sinB}$=$\frac{3×\frac{56}{65}}{\frac{12}{13}}$=$\frac{14}{5}$.
故答案為:$\frac{14}{5}$.
點評 此題考查了正弦、余弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 8 | C. | $\frac{8}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M∩N=∅ | B. | M∪N=M | C. | M∩N=M | D. | M∪N=R |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com