若(1-x)(x+1)6的展開式中x2項的系數(shù)為a,x項的系數(shù)為b,則a與b的等比中項為
±3
5
±3
5
分析:求出x2項的系數(shù)a=
C
2
6
-
C
1
6
=9
,x項的系數(shù)b=
C
1
6
-1
=5,由等比中項的定義求得a與b的等比中項.
解答:解:由于x2項的系數(shù)a=
C
2
6
-
C
1
6
=9
,x項的系數(shù)b=
C
1
6
-1
=5,所以a與b的等比中項為±
9×5
=±3
5
,
故答案為 ±3
5
點評:本題主要考查二項式定理的應(yīng)用,求展開式中某項的系數(shù),等比中項的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-|x-1|,x∈[0,2]
1
2
(x-2),x∈[2,+∞)
,則下列說法中正確的是
②④
②④
(只寫序號)
①函數(shù)y=f(x)-ln(x+1)有3個零點;
②若x>0,時,函數(shù)f(x)≤
k
x
恒成立,則實數(shù)k的取值范圍是[
3
2
,+∞);
③函數(shù)f(x)的極大值中一定存在最小值;
④f(x)=2kf(x+2k),(k∈N),對于一切x∈[0,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當a=1時,求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數(shù)m的范圍;
(3)當2≤a<9時,設(shè)f(x)=f2(x)所對應(yīng)的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為D的函數(shù)y=f(x),若對于任意x∈D,存在正數(shù)K,都有|f(x)|≤K|x|成立,那么稱函數(shù)y=f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):
①f(x)=2x;
②f(x)=2sin(x+
π
4
);     
③f(x)=x3-2x2+x;    
④f(x)=
x2
x2+x+1
,
其中是“倍約束函數(shù)”的是
①④
①④
.(將你認為正確的函數(shù)序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(x+1)n(其中n∈N+).
(1)若f(x)=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,求a0及Sn=a1+a2+a3+…+an;
(2)當n=2013,計算:
C
1
2013
-2
C
2
2013
+…+k
C
k
2013
(-1)k-1+…+2013
C
2013
2013
(-1)2012

查看答案和解析>>

同步練習(xí)冊答案