【題目】(2015秋運城期中)已知函數(shù)f(x)=(log2x﹣2)(log4x﹣).
(1)當x∈[1,4]時,求該函數(shù)的值域;
(2)若f(x)≤mlog2x對于x∈[4,16]恒成立,求m得取值范圍.
【答案】(1)[﹣,1];(2)m≥.
【解析】
試題(1)利用換元法令t=log2x,t∈[0,2],得f(t)=(t﹣2)(t﹣),利用二次函數(shù)性質(zhì)可得f(0)≥f(t)≥f(),
進而求出值域;
(2)由(1)可整理不等式為t+﹣3≤2m恒成立,只需求出左式的最大值即可,利用構造函數(shù)g(t)=t+,知在(,+∞)上遞增,求出最大值.
解:令t=log2x,t∈[0,2],
∴f(t)=(t﹣2)(t﹣)
=(t﹣2)(t﹣1),
∴f(0)≥f(t)≥f(),
∴﹣≤f(t)≤1,
故該函數(shù)的值域為[﹣,1];
(2)x∈[4,16],
∴t∈[2,4],
∴(t﹣2)(t﹣1)≤mt,
∴t+﹣3≤2m恒成立,
令g(t)=t+,知在(,+∞)上遞增,
∴g(t)≤g(4)=,
∴﹣3≤2m,
∴m≥.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名籃球運動員,甲投籃一次命中的概率為,乙投籃一次命中的概率為,若甲、乙各投籃三次,設為甲、乙投籃命中的次數(shù)的差的絕對值,其中甲、乙兩人投籃是否命中相互沒有影響.
(1)若甲、乙第一次投籃都命中,求甲獲勝(甲投籃命中數(shù)比乙多)的概率;
(2)求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,為邊長等于的正方形,△和△均為正三角形,在三棱錐中,
(1)求證:;
(2)求與平面所成的角的大;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義空間點到幾何圖形的距離為:這一點到這個幾何圖形上各點距離中最短距離.
(1)在空間,求與定點距離等于1的點所圍成的幾何體的體積和表面積;
(2)在空間,線段(包括端點)的長等于1,求到線段的距離等于1的點所圍成的幾何體的體積和表面積;
(3)在空間,記邊長為1的正方形區(qū)域(包括邊界及內(nèi)部的點)為,求到距離等于1的點所圍成的幾何體的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三角形中,已知內(nèi)角所對的邊分別是,且,,則該三角形的外接圓半徑為____,若D為BC的三等分點,AD的最大值為____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中.
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)當時,求函數(shù)的極值點
(Ⅲ)證明:對任意的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,以,為焦點的橢圓:恰好過,兩點.
(1)求橢圓的方程;
(2)已知為原點,直線:與軸交于點,與橢圓相交于、兩點,且、在軸異側,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述:①甲只能承擔第四項工作;②乙不能承擔第二項工作;③丙可以不承擔第三項工作;④丁可以承擔第三項工作;其中錯誤的是______.
一 | 二 | 三 | 四 | 五 | |
甲 | 15 | 17 | 14 | 17 | 15 |
乙 | 22 | 23 | 21 | 20 | 20 |
丙 | 9 | 13 | 14 | 12 | 10 |
丁 | 7 | 9 | 11 | 9 | 11 |
戊 | 13 | 15 | 14 | 15 | 11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com