【題目】已知函數(shù)(,常數(shù)).
(1)當時,解不等式;
(2)當時,判斷并用定義法證明函數(shù)在的單調性;
(3)討論函數(shù)的奇偶性,并說明理由.
【答案】(1) (2)單調遞增,證明見解析 (3)當時,函數(shù)為偶函數(shù);當時,函數(shù)為非奇非偶函數(shù),理由見解析
【解析】
(1)化簡原不等式,再由二次不等式的解法,即可得到所求解集;
(2)利用定義法證明函數(shù)單調性,按照步驟“任取,作差,變形,判號,下結論”進行即可.
(3) 對討論,利用函數(shù)奇偶性的定義判斷即可.
(1) 當時,
即,即
所以
所以不等式的解集為
(2) 當時, 在上單調遞增;
證明:任取且
由,有
所以,,
所以
即,即
所以函數(shù)在的單調性;
(3)當時,,顯然
所以此時為偶函數(shù).
當時,, ,
則 ,且
此時函數(shù)為非奇非偶函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學越來越受到廣大考生的青睞,下表是西南地區(qū)某大學近五年的錄取平均分與省一本線對比表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
省一本線 | 505 | 500 | 525 | 500 | 530 |
錄取平均分533 | 534 | 566 | 547 | 580 | |
錄取平均分與省一本線分差y | 28 | 34 | 41 | 47 | 50 |
(1)根據(jù)上表數(shù)據(jù)可知,y與t之間存在線性相關關系,求y關于t的線性回歸方程;
(2)據(jù)以往數(shù)據(jù)可知,該大學每年的錄取分數(shù)X服從正態(tài)分布,其中為當年該大學的錄取平均分,假設2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學,想第一志愿填報,請利用概率與統(tǒng)計知識,給李華一個合理的建議.(第一志愿錄取可能性低于,則建議謹慎報考)
參考公式:,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學生進行調查.
(1)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的100名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),如表是根據(jù)調查結果得到的列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中隨機抽取4人,設這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學期望.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,為山腳兩側共線的3點,在山頂處測得3點的俯角分別為,計劃沿直線開通穿山隧道,為求出隧道的長度,你認為還需要直接測量出中哪些線段的長度?根據(jù)條件,并把你認為需要測量的線段長度作為已知量,寫出計算隧道長度的運算步驟.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )
A. 3寸B. 4寸C. 5寸D. 6寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列結論是否正確(正確的在括號內打“√”,錯誤的打“×”),并說明理由.
(1)若與都是單位向量,則.( )
(2)方向為南偏西60°的向量與北偏東60°的向量是共線向量.( )
(3)直角坐標平面上的x軸、y軸都是向量.( )
(4)若與是平行向量,則.( )
(5)若用有向線段表示的向量與不相等,則點M與N不重合.( )
(6)海拔、溫度、角度都不是向量.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com