【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
【答案】
(1)解:解:m、n∈R+,
當(dāng)x≥ 時,f(x)=x+m+2x﹣n=3x+m﹣n,當(dāng)x= 時,取得最小值m+ ;
當(dāng)﹣m≤x≤ 時,f(x)=x+m+n﹣2x=﹣x+m+n,當(dāng)x= 時,取得最小值m+ ;
當(dāng)x≤﹣m時,f(x)=﹣(x+m)﹣(2x﹣n)=﹣3x﹣m+n,當(dāng)x=﹣m時,取得最小值2m+n.
∵2m+n﹣ =m+ >0.
∴x= 時,f(x)的最小值為m+
(2)解:證明:由(1)可知:m+ =2,m、n∈R+,
∴4(m2+ )≥2 =8,當(dāng)且僅當(dāng)m= =1時取等號
【解析】(1)對x與﹣m, 的大小關(guān)系分類討論,利用一次函數(shù)的單調(diào)性即可得出.(2)利用不等式的基本性質(zhì)即可得出.
【考點精析】利用函數(shù)的最值及其幾何意義對題目進(jìn)行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假閱讀名著的情況,一名教師對某班級的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差 與女學(xué)生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系原點O為極點,以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長度單位為長度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點,求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點,有|MP|=|NP|,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當(dāng)?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個入口P(點P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點分別是B,P.當(dāng)新建的兩條公路總長最小時,投資費用最低.設(shè)∠POA=,公路MB,MN的總長為.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)當(dāng)為何值時,投資費用最低?并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點處的切線經(jīng)過點,求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)時,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支球隊進(jìn)行總決賽,比賽采用五場三勝制,即若有一隊先勝三場,則此隊為總冠軍,比賽就此結(jié)束.因兩隊實力相當(dāng),每場比賽兩隊獲勝的可能性均為二分之一.據(jù)以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.
(1)求總決賽中獲得門票總收入恰好為150萬元且甲獲得總冠軍的概率;
(2)設(shè)總決賽中獲得的門票總收入為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意x∈A,y∈B,(AR,BR)有唯一確定的f(x,y)與之對應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③ .
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com