分析 (1)$\overrightarrow{MD}$=$\overrightarrow{MB}$+$\overrightarrow{BD}$=($\overrightarrow{AB}$-$\overrightarrow{AM}$)+$\frac{1}{2}$$\overrightarrow{BC}$,從而解得,$\overrightarrow{MN}$=$\overrightarrow{AN}$-$\overrightarrow{AM}$=n$\overrightarrow{AC}$-m$\overrightarrow{AB}$;
(2)由$\overrightarrow{MD}$與$\overrightarrow{MN}$共線可得($\frac{1}{2}$-m)n=-$\frac{1}{2}$m,從而解得.
解答 解:(1)$\overrightarrow{MD}$=$\overrightarrow{MB}$+$\overrightarrow{BD}$
=($\overrightarrow{AB}$-$\overrightarrow{AM}$)+$\frac{1}{2}$$\overrightarrow{BC}$
=($\overrightarrow{AB}$-m$\overrightarrow{AB}$)+$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=($\frac{1}{2}$-m)$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$=($\frac{1}{2}$-m)$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$;
$\overrightarrow{MN}$=$\overrightarrow{AN}$-$\overrightarrow{AM}$
=n$\overrightarrow{AC}$-m$\overrightarrow{AB}$=n$\overrightarrow$-m$\overrightarrow{a}$;
(2)∵$\overrightarrow{MD}$與$\overrightarrow{MN}$共線,
∴存在λ,使$\overrightarrow{MD}$=λ$\overrightarrow{MN}$,
即($\frac{1}{2}$-m)$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$=λ(n$\overrightarrow$-m$\overrightarrow{a}$),
故$\left\{\begin{array}{l}{\frac{1}{2}-m=-mλ}\\{\frac{1}{2}=nλ}\end{array}\right.$,
故($\frac{1}{2}$-m)n=-$\frac{1}{2}$m,
即$\frac{1}{m}$+$\frac{1}{n}$=2.
點評 本題考查了平面向量的線性運算的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②④ | C. | ①②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 15 | D. | -15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com