分析:(Ⅰ)先求導(dǎo)得到
f′(x)=2x-+b,由,f(1)=1+b=0,得到a與b的值,繼而求出函數(shù)的解析式,
(Ⅱ)令g(b)=xb+x
2-alnx,b∈[-2,-1],問題轉(zhuǎn)化為在x∈(1,e)上g(b)
max=g(-1)<0有解即可,亦即只需存在x
0∈(1,e)使得x
2-x-alnx<0即可,連續(xù)利用導(dǎo)函數(shù),然后分別對1-a≥0,1-a<0,看是否存在x
0∈(1,e)使得h(x
0)<h(1)=0,進(jìn)而得到結(jié)論.
解答:
解:(Ⅰ)
f′(x)=2x-+b,
∵x=2是函數(shù)f(x)的極值點(diǎn),
∴f′(2)=4-
+b=0.
∵1是函數(shù)f(x)的零點(diǎn),得f(1)=1+b=0,
由
,
解得a=6,b=-1.
∴f(x)=x
2-x-6lnx,
(Ⅱ)令g(b)=xb+x
2-alnx,b∈[-2,-1],則g(b)為關(guān)于b的一次函數(shù)且為增函數(shù),
根據(jù)題意,對任意b∈[-2,-1],都存在x∈(1,e)(e 為自然對數(shù)的底數(shù)),使得f(x)<0成立,
則在x∈(1,e)上g(b)
max=g(-1)=-x+x
2-alnx<0,有解,
令h(x)=x
2-x-alnx,只需存在x
0∈(1,e)使得h(x
0)<0即可,
由于h′(x)=2x-1-
,
令φ(x)=2x
2-x-a,x∈(1,e),φ'(x)=4x-1>0,
∴φ(x)在(1,e)上單調(diào)遞增,φ(x)>φ(1)=1-a,
①當(dāng)1-a≥0,即a≤1時(shí),φ(x)>0,即h′(x)>0,h(x)在(1,e)上單調(diào)遞增,∴h(x)>h(1)=0,不符合題意.
②當(dāng)1-a<0,即a>1時(shí),φ(1)=1-a<0,φ(e)=2e
2-e-a
若a≥2e
2-e>1,則φ(e)<0,所以在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上單調(diào)遞減,
∴存在x
0∈(1,e)使得h(x
0)<h(1)=0,符合題意.
若2e
2-e>a>1,則φ(e)>0,∴在(1,e)上一定存在實(shí)數(shù)m,使得φ(m)=0,
∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上單調(diào)遞減,
∴存在x
0∈(1,e)使得h(x
0)<h(1)=0,符合題意.
綜上所述,當(dāng)a>1時(shí),對任意b∈[-2,-1],都存在x∈(1,e)(e 為自然對數(shù)的底數(shù)),使得f(x)<0成立.