選修4-4:坐標系與參數(shù)方程
平面直角坐標系xOy中,點A(2,0)在曲線C1
x=acosφ
y=sinφ
,(a>0,φ為參數(shù))上.以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為:ρ=acosθ
(Ⅰ)求曲線C2的普通方程
(Ⅱ)已知點M,N的極坐標分別為(ρ1,θ),(ρ2,θ+
π
2
),若點M,N都在曲線C1上,求
1
ρ21
+
1
ρ22
的值.
(Ⅰ)∵點A(2,0)在曲線C1上,∴
2=acosφ
0=sinφ
,
∵a>0,∴a=2,∴ρ=2cosθ.
x=ρcosθ
y=ρsinθ
,得(x-1)2+y2=1.
所以曲線C2的普通方程為(x-1)2+y2=1;
(Ⅱ)由(Ⅰ)得曲線C1
x=2cosφ
y=sinφ
的普通方程為
x2
4
+y2=1

由題意得點M,N的直角坐標分別為(ρ1cosθ,ρ1sinθ),(ρ2cos(θ+
π
2
),ρ2sin(θ+
π
2
))

∵點M,N在曲線C1上,
ρ12cos2θ
4
+ρ12sin2θ=1
ρ22sin2θ
4
+ρ22cos2θ=1

1
ρ21
+
1
ρ22
=(
cos2θ
4
+sin2θ)+(
sin2θ
4
+cos2θ)
=
5
4
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C的極坐標方程為.
(1)若直線過原點,且被曲線C截得弦長最短,求此時直線的標準形式的參數(shù)方程;
(2)是曲線C上的動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線,直線為參數(shù))
寫出曲線的參數(shù)方程,直線的普通方程;
過曲線上任意一點作與夾角為30°的直線,交于點,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(選做題)在直角坐標系xOy中,曲線C1的參數(shù)方程為
x=-3t+2
y=4t.
(t
為參數(shù)),P為C1上的動點,Q為線段OP的中點.
(Ⅰ)求點Q的軌跡C2的方程;
(Ⅱ)在以O(shè)為極點,x軸的正半軸為極軸(兩坐標系取相同的長度單位)的極坐標系中,N為曲線ρ=2sinθ上的動點,M為C2與x軸的交點,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,已知曲線C1和曲線C2的參數(shù)方程分別為
x=t2
y=t
(t為參數(shù))和
x=
2
cosθ
y=
2
sinθ
(θ為參數(shù)),且C1和C2相交于A,B,則|AB|=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ.
(θ為參數(shù)),則曲線C上的點到直線2x-y+2=0的距離的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,曲線C1和C2的參數(shù)方程分別為,則曲線C1與C2的交點坐標為_______。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線為參數(shù))被圓截得的弦長為最大,則此直線的傾斜角為           ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到定直線的距離比到定點的距離多1,
(I)求動點的軌跡的方程;
(II)設(shè),求曲線上點到點距離的最小值

查看答案和解析>>

同步練習冊答案