【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下資料:

日期

溫差

發(fā)芽數(shù)(顆)

該農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的組數(shù)據(jù)恰好是不相鄰兩天數(shù)據(jù)的概率;

(2)若選取的是日與日的數(shù)據(jù),請根據(jù)日至日的數(shù)據(jù)求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆.則認(rèn)為得到的線性回歸方程是可靠的.試問(2)中所得到的線性回歸方程是可靠的嗎?

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

,.

【答案】(1);(2);(3)見解析

【解析】分析:(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據(jù)等可能事件的概率做出結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),先求出,即求出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
(3)根據(jù)估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,就認(rèn)為得到的線性回歸方程是可靠的,根據(jù)求得的結(jié)果和所給的數(shù)據(jù)進行比較,得到所求的方程是可靠的.

詳解:

(1)設(shè)“選取的2組數(shù)據(jù)恰好是不相鄰兩天的數(shù)據(jù)”為事件A.

從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中數(shù)據(jù)為12月份的日期數(shù).

每種情況都是等可能出現(xiàn)的,事件A包括的基本事件有6種.

.∴選取的2組數(shù)據(jù)恰好是不相鄰兩天數(shù)據(jù)的概率是.

(2)由數(shù)據(jù)可得.

, .

∴y關(guān)于x的線性回歸方程為.

(3)當(dāng)x=10時,,|22-23|<2;

同理,當(dāng)x=8,,|17-16|<2.

∴(2)中所得到的線性回歸方程是可靠的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)參加2018年高考,根據(jù)高三年級一年來的各種大、中、小型數(shù)學(xué)模擬考試總結(jié)出來的數(shù)據(jù)顯示,甲、乙兩人能考140分以上的概率分別為,甲、乙兩人是否考140分以上相互獨立,則預(yù)估這兩個人在2018年高考中恰有一人數(shù)學(xué)考140 分以上的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量 (單位:)和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

298.8

1.6

1469

108.8

表中,

(1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)以知這種產(chǎn)品的年利率的關(guān)系為.根據(jù)(2)的結(jié)果求年宣傳費時,年銷售量及年利潤的預(yù)報值是多少?

附:對于一組數(shù)據(jù),……,其回歸線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3 )f(log3 ),則 a,b,c的大小關(guān)系是(
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是(
A.1+2
B.3+2
C.4﹣2
D.5﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ex﹣2x﹣a在R上有兩個零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級開設(shè)五門選修課,每位同學(xué)須彼此獨立地從中選擇兩門課程,已知甲同學(xué)必選課程,乙同學(xué)不選課程,丙同學(xué)從五門課程中隨機任選兩門.

(1)求甲同學(xué)與乙同學(xué)恰有一門課程相同的概率;

(2)設(shè)為甲、乙、丙三位同學(xué)中選課程的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示.

(1)求函數(shù)的解析式;

(2)求圖中的值及函數(shù)的單調(diào)遞減區(qū)間;

(3)若將的圖象向左平移個單位后,得到的圖像關(guān)于直線對稱,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案