已知O,M,A,B,C為空間五點(diǎn),滿足=α·+(1+β)-(α+β)·(α,β,∈R)則

[  ]

A.O,M,A,B,C五點(diǎn)一定共面

B.O,M,A,B,C五點(diǎn)一定不共面

C.M,A,B,C四點(diǎn)一定共面

D.M,A,B,C四點(diǎn)一定不共面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•中山模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>o)
的左焦點(diǎn)為F(-
2
,0),離心率e=
2
2
,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,問(wèn):是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說(shuō)明理由.
(Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱(chēng),點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F(1,0),離心率為e.
(1)若e=
2
2
,求橢圓方程;
(2)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF,BF的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上.
(i)將k表示成e的函數(shù);
(ii)當(dāng)e∈(
2
2
3
2
]
時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F(1,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△OMF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線l交橢圓于P,Q兩點(diǎn),且使點(diǎn)F為△PQM的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點(diǎn)且
AF1
F1B
=1.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ.連接AQ并延長(zhǎng)交直線l于點(diǎn)M,N為MB的中點(diǎn),判定直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案