【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線(xiàn)相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓過(guò)右焦點(diǎn)的弦為、過(guò)原點(diǎn)的弦為,若,求證:為定值.
【答案】(Ⅰ) ;(Ⅱ)證明見(jiàn)解析.
【解析】
試題分析:
(Ⅰ)由題意結(jié)合點(diǎn)到直線(xiàn)距離公式可得.結(jié)合離心率計(jì)算公式有.則橢圓的方程為.
(Ⅱ)對(duì)直線(xiàn)的斜率分類(lèi)討論:當(dāng)直線(xiàn)的斜率不存在時(shí),.當(dāng)直線(xiàn)的斜率存在時(shí),設(shè),,,,聯(lián)立直線(xiàn)方程與橢圓方程有,由弦長(zhǎng)公式可得.聯(lián)立直線(xiàn)與橢圓方程,結(jié)合弦長(zhǎng)公式有.計(jì)算可得.據(jù)此可得:為定值.
試題解析:
(Ⅰ)依題意,原點(diǎn)到直線(xiàn)的距離為,
則有.
由,得.
∴橢圓的方程為.
(Ⅱ)證明:(1)當(dāng)直線(xiàn)的斜率不存在時(shí),易求,,
則.
(2)當(dāng)直線(xiàn)的斜率存在時(shí),
設(shè)直線(xiàn)的斜率為,依題意,
則直線(xiàn)的方程為,直線(xiàn)的方程為.
設(shè),,,,
由得,
則,,
.
由整理得,則.
.
∴.
綜合(1)(2),為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱(chēng)為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對(duì)任意的恒成立;④存在三個(gè)點(diǎn),,,使得為等邊三角形.其中真命題的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓()的圓心為點(diǎn),直線(xiàn):.
(1)若,求直線(xiàn)被圓所截得弦長(zhǎng)的最大值;
(2)若直線(xiàn)是圓心下方的切線(xiàn),當(dāng)在上變化時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=Acos(ωx+φ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位長(zhǎng)度后得到函數(shù)f(x)的圖象.求:
(1)函數(shù)f(x)在上的值域;
(2)使f(x)≥2成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中為正方形,分別為的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線(xiàn)與直線(xiàn)異面;②直線(xiàn)與直線(xiàn)異面;③直線(xiàn)平面;④平面平面;其中正確的是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù), 是數(shù)列的前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個(gè)頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線(xiàn)段上找一處開(kāi)挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫(xiàn),,,已知米,,記,該三條地下天燃?xì)夤芫(xiàn)的總長(zhǎng)度為米.
(1)將表示成的函數(shù),并寫(xiě)出的范圍;
(2)請(qǐng)確定工作坑的位置,使此處地下天燃?xì)夤芫(xiàn)的總長(zhǎng)度最小,并求出總長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲同學(xué)參加化學(xué)競(jìng)賽初賽,考試分為筆試、口試、實(shí)驗(yàn)三個(gè)項(xiàng)目,各單項(xiàng)通過(guò)考試的概率依次為、、,筆試、口試、實(shí)驗(yàn)通過(guò)考試分別記4分、2分、4分,沒(méi)通過(guò)的項(xiàng)目記0分,各項(xiàng)成績(jī)互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;
(Ⅱ)記三個(gè)項(xiàng)目中通過(guò)考試的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)如圖,三角形所在的平面與長(zhǎng)方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com