【題目】已知命題 “存在 ”,命題 :“曲線 表示焦點(diǎn)在 軸上的橢圓”,命題 “曲線 表示雙曲線”
(1)若“ 且 ”是真命題,求實(shí)數(shù) 的取值范圍;
(2)若 是 的必要不充分條件,求實(shí)數(shù) 的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合…,…,,對(duì)于…,,B=(…,,定義A與B的差為
…,A與B之間的距離為.
(Ⅰ)若,求;
(Ⅱ)證明:對(duì)任意,有
(i),且;
(ii)三個(gè)數(shù)中至少有一個(gè)是偶數(shù);
(Ⅲ)對(duì)于……,再定義一種A與B之間的運(yùn)算,并寫出兩條該運(yùn)算滿足的性質(zhì)(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項(xiàng)a7和通項(xiàng)公式an;
(2)若數(shù)列{bn}的通項(xiàng)bn=an+an+1,{bn}的前n項(xiàng)和Sn,寫出使得Sn小于55時(shí)所有可能的bn的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列 中, ,其前 項(xiàng)和為 ,等比數(shù)列 的各項(xiàng)均為正數(shù), ,公比為 ,且 , .
(Ⅰ)求 與 .
(Ⅱ)設(shè)數(shù)列 滿足 ,求 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E、F分別是AB、CD上的點(diǎn),BE=CF=1,BC=2,AB=CD=3,P、Q分別為DE、CF的中點(diǎn),現(xiàn)沿著EF翻折,使得二面角A﹣EF﹣B大小為 .
(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求二面角A﹣DB﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各個(gè)說法正確的是( )
A. 終邊相同的角都相等 B. 鈍角是第二象限的角
C. 第一象限的角是銳角 D. 第四象限的角是負(fù)角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為( )
A.y=tan(2x+ )
B.y=tan(x﹣ )
C.y=tan(2x﹣ )
D.y=tan2x
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com