【題目】已知函數(shù)

(1)若,求曲線在點處的切線方程;

(2)若處取得極小值,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1時, ,利用導數(shù)幾何意義,求出函數(shù)在處的切線斜率,再求出切線方程;(2)對函數(shù)求導,令,討論的單調(diào)性,對 分情況討論,得出實數(shù)的取值范圍.

試題解析:(1)當時, , , ,所以曲線在點處的切線方程為.

(2)由已知得,則,

,則

①當, 時, ,函數(shù)單調(diào)遞增,

所以當時, ,當時, ,

所以處取得極小值,滿足題意.

②當時, 時, ,函數(shù)單調(diào)遞增,

可得當時, 時, 當,

所以處取得極小值,滿足題意.

③當時,當時, ,函數(shù)單調(diào)遞增,

時, 內(nèi)單調(diào)遞減,

所以當時, , 單調(diào)遞減,不合題意.

④當時,即,當時, , 單調(diào)遞減,

,當時, , 單調(diào)遞減, ,

所以處取得極大值,不合題意.

綜上可知,實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0, )上的函數(shù)f(x)的導函數(shù)為f′(x),且對于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,則(
A. f( )> f(
B.f( )>f(1)
C. f( )<f(
D. f( )<f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四個結(jié)論:
直線l經(jīng)過定點(0,-2);
②若直線l在x軸和y軸上的截距相等,則 =1;
∈[1, 4+3 ]時,直線l的傾斜角q∈[120°,135°];
④當 ∈(0,+∞)時,直線l與兩坐標軸圍成的三角形面積的最小值為
其中正確結(jié)論的是(填上你認為正確的所有序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1經(jīng)過兩點(-1,-2)、(-1,4),直線l2經(jīng)過兩點(2,1)、(x,6),且l1||l2 , 則x=( ).
A.2
B.-2
C.4
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點,動點在橢圓上,且使得的點恰有兩個,動點到焦點的距離的最大值為.

(1)求橢圓的方程;

(2)如圖,以橢圓的長軸為直徑作圓,過直線上的動點作圓的兩條切線,設切點分別為,若直線與橢圓交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形, 為棱上的動點,且.

(1)求證:

(2)試確定的值,使得二面角的平面角余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:空間兩向量 =(1,﹣1,m)與 =(1,2,m)的夾角不大于 ;命題q:雙曲線 =1的離心率e∈(1,2).若¬q與p∧q均為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

若商店一天購進該商品10件,求當天的利潤y單位:元關(guān)于當天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信已成為人們常用的社交軟件,“微信運動”是微信里由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關(guān)注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:

步數(shù)

性別

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.

(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數(shù)超過10000步的概率;

(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案