【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記 , 的斜率為, .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

【答案】(Ⅰ) ;(Ⅱ)存在常數(shù)符合題意.

【解析】試題分析:(1根據(jù)離心率得a,b,c三者關(guān)系,再將P點坐標代入橢圓方程,解得, .2先根據(jù)兩點斜率公式化簡,以及,再利用直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達定理化簡,最后作商得的值

試題解析: 在橢圓上得,

依題設(shè)知,則

②帶入①解得 , .

故橢圓的方程為.

由題意可設(shè)的斜率為,

則直線的方程為

代入橢圓方程并整理,得,

設(shè), ,則有

,

在方程③中令得, 的坐標為 .

從而, .

注意到, , 共線,則有,即有.

所以

④代入⑤得

,所以,故存在常數(shù)符合題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式,

②參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式 ;

②參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如表:

1

2

3

4

12

28

42

56

(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點圖;

(Ⅱ)根據(jù)(Ⅰ)中的散點圖擬合的回歸模型,并用相關(guān)系數(shù)甲乙說明;

(Ⅲ)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量約為多少?.

附注:參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù),

回歸方程中斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

寫出曲線的極坐標的方程以及曲線的直角坐標方程;

若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿海準備購買“海馬”牌一輛小汽車,其中購車費用12.8萬元,每年的保險費、汽油費約為0.95萬元,年維修、保養(yǎng)費第一年是0.1萬元,以后逐年遞增0.1萬元.請你幫阿海計算一下這種汽車使用多少年,它的年平均費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高二年級學(xué)生對教師教學(xué)的意見,打算從高二年級883名學(xué)生中抽取80名進行座談,若采用下面的方法選。合扔煤唵坞S機抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進行,則每人入選的概率是(
A.
B.
C.
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),關(guān)于實數(shù)的不等式的解集為

1)當時,解關(guān)于的不等式: ;

2)是否存在實數(shù),使得關(guān)于的函數(shù))的最小值為?若存在,求實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案