如圖,過拋物線x2=2py(p>0)的焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,若|BC|=
2
|BF|,且|AF|=4+2
2
,則p=(  )
A、1
B、2
C、
5
2
D、3
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:常規(guī)題型,計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,根據(jù)拋物線定義可知|BD|=a,進(jìn)而推斷出∠BCD的值,求出|CF|,可得|GF|,即可求出p的值.
解答: 解:分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,
設(shè)|BF|=a,則由已知得:|BC|=
2
a,由定義得:|BD|=a,故∠BCD=45°,
在直角三角形ACE中,∵|AE|=4+2
2
,
∴|AC|=4
2
+4
∵|AF|=4+2
2

∴|CF|=2
2
,
∴|GF|=2
∴p=2,
故選:B.
點(diǎn)評(píng):本題主要考查了拋物線的標(biāo)準(zhǔn)方程.考查了學(xué)生對(duì)拋物線的定義和基本知識(shí)的綜合把握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則下列結(jié)論中不正確的是( 。
A、函數(shù)y=f(x)•g(x)的最小正周期為π
B、函數(shù)y=f(x)•g(x)的最大值為
1
2
C、函數(shù)y=f(x)•g(x)的圖象關(guān)于點(diǎn)(
π
4
,0)成中心對(duì)稱
D、將函數(shù)f(x)的圖象向右平移
π
2
個(gè)單位后得到函數(shù)g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=2x2-12x+19的頂點(diǎn)坐標(biāo)是( 。
A、(3,1)
B、(3,-1)
C、(-3,1)
D、(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=(cos23°,sin23°),
AC
=(2cos68°,2sin68°),則△ABC的面積為( 。
A、2
2
B、
2
2
C、
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列4個(gè)命題:
①若sin(
π
4
+α)=
3
5
,則cos(α-
π
4
)=
3
5

②存在實(shí)數(shù)α使sinα+cosα=
3
2

③x=
π
8
是函數(shù)y=sin(2x+
4
)的圖象的一條對(duì)稱軸方程
④要得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x+
π
3
)的圖象向左平移
π
3
個(gè)單位
其中正確的命題序號(hào)是( 。
A、①②③B、③④
C、①③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

變量x,y滿足
x+y≥0
x-y+4≥0
x≤0
,則目標(biāo)函數(shù)z=2x+y的最大值是(  )
A、8B、4C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=2x+5x的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(-1,0)
D、(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于事件A,P(A)表示事件A發(fā)生的概率.則下列命題正確的是(  )
A、如果P(A∪B)=P(A)+P(B),那么事件A、B互斥
B、如果P(A∪B)=P(A)+P(B)=1,那么事件A、B對(duì)立
C、P(A∪B)=P(A)+P(B)=1是事件A、B對(duì)立的充要條件
D、事件A、B互斥是P(A∪B)=P(A)+P(B)的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)Sn滿足2SnSn-1=Sn-1-Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
Sn
2n+1
,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)是否存在自然數(shù)m,使得對(duì)任意n∈N*,都有Tn
1
4
(m-519)成立?若存在,求出m的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案