【題目】已知橢圓E:的焦點在軸上,AE的左頂點,斜率為k k > 0)的直線交EA,M兩點,點NE上,MA⊥NA.

)當t=4時,求△AMN的面積;

)當時,求k的取值范圍.

【答案】;(.

【解析】

試題()先求直線的方程,再求點的縱坐標,最后求的面積;()設(shè),寫出A點坐標,并求直線的方程,將其與橢圓方程組成方程組,消去,用表示,從而表示,同理用表示,再由t的取值范圍求的取值范圍.

試題解析:()設(shè),則由題意知,當時,的方程為,.

由已知及橢圓的對稱性知,直線的傾斜角為.因此直線的方程為.

代入.解得,所以.

因此的面積 .

)由題意,.

將直線的方程代入.

,故.

由題設(shè),直線的方程為,故同理可得,

,即.

時上式不成立,

因此.等價于,

.由此得,或,解得.

因此的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機選出2名,設(shè)隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),均為正的常數(shù))的最小正周期為,當時,函數(shù)取得最小值,則下列結(jié)論正確的是(

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅持保民生、保藍天,嚴格落實機動車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對“單雙號限行”的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為“是否贊同限行與是否擁有私家車”有關(guān);

(2)為了了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少抽到1名“沒有私家車”人員的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機挑選出5名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:

數(shù)據(jù)表明之間有較強的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?10分,利用(1)中的回歸方程,估計該同學(xué)的物理成績;

(3)本次考試中,規(guī)定數(shù)學(xué)成績達到125分為優(yōu)秀,物理成績達到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯誤概率不超過0.01的前提下認為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用適當?shù)姆椒ū硎鞠铝屑希?/span>

1)一年中有31天的月份的全體;

2)大于小于12.8的整數(shù)的全體;

3)梯形的全體構(gòu)成的集合;

4)所有能被3整除的數(shù)的集合;

5)方程的解組成的集合;

6)不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大連市某企業(yè)為確定下一年投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

573

6.8

289.8

1.6

215083.4

31280

表中.

根據(jù)散點圖判斷,哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)

根據(jù)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

已知這種產(chǎn)品的年利潤、的關(guān)系為.根據(jù)的結(jié)果回答下列問題:

年宣傳費時,年銷售量及年利潤的預(yù)報值是多少?

年宣傳費為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓短軸的兩個端點與點構(gòu)成正三角形.

(1)求橢圓的方程;

(2)若過點的直線與橢圓交于不同的兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出的坐標,并求出這個定值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案