已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(I)求橢圓方程;

(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

 

【答案】

(I).     (II) .

【解析】本試題主要考查橢圓方程的求解,以及直線與橢圓的位置關(guān)系的綜合運(yùn)用,求解直線的方程的綜合運(yùn)用。

(1)利用橢圓的性質(zhì)來(lái)表示得到參數(shù)ab,c的值,進(jìn)而得到橢圓的方程。

(2)根據(jù)直線與橢圓方程聯(lián)立方程組,然后得到二次方程,結(jié)合韋達(dá)定理得到根與系數(shù)的關(guān)系,由M分有向線段所成的比為2,進(jìn)而得到斜率的值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有( 。
A、1個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,右焦點(diǎn)到短軸端點(diǎn)的距離為2,到右頂點(diǎn)的距離為1,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
2
2
,點(diǎn)F1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)F2且垂直于長(zhǎng)軸的弦長(zhǎng)為
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的左焦點(diǎn)F1作直線l,交橢圓于P,Q兩點(diǎn),若
F2P
F2Q
=2
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸,長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的3倍,且過(guò)點(diǎn)P(3,2),求此橢圓的方程;
(2)求與雙曲線
x2
5
-
y2
3
=1
有公共漸近線,且焦距為8的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則橢圓的離心率是①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中正確的是
①②③④⑤
①②③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案