已知集合U=R,集合A={x|-l≤x≤3},集合B=|x|log2x<2},則A∩B=(  )
A、{x|1≤x≤3}
B、{x|-1≤x≤3}
C、{x|0<x≤3}
D、{x|-1≤x<0}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出B中不等式的解集確定出B,找出A與B的交集即可.
解答: 解:由B中的不等式變形得:log2x<2=log24,得到0<x<4,
∴B={x|0<x<4},
∵A={x|-l≤x≤3},
∴A∩B={x|0<x≤3}.
故選:C.
點(diǎn)評:此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1 
y≤2x-1 
x+y≤m 
  
,如果目標(biāo)函數(shù)z=x-y的最小值是-1,那么此目標(biāo)函數(shù)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos
πx
3
,根據(jù)下列框圖,輸出S的值為( 。
A、670
B、670
1
2
C、671
D、672

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)f(x)=-2(f(x)≠0),且在區(qū)間(2013,2014)上單調(diào)遞增,已知α,β是銳角三角形的兩個內(nèi)角,則f(sinα)、f(cosβ)的大小關(guān)系是(  )
A、f(sinα)<f(cosβ)
B、f(sinα)>f(cosβ)
C、f(sinα)=f(cosβ)
D、以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

荷花池中,有一只青蛙在成品字形的三片荷葉上跳來跳去(每次跳躍時,均從一葉跳到另一葉),而且逆時針方向跳的概率是順時針方向跳的概率的兩倍,如圖.假設(shè)現(xiàn)在青蛙在A葉上,則跳三次之后停在A葉上的概率是(  )
A、
1
3
B、
2
9
C、
4
9
D、
8
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖示,在底面為直角梯形的四棱椎P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐M-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱AM的長為3,且AM和AB、AD的夾角都是60°,N是CM的中點(diǎn),設(shè)
a
=
AB
,
b
=
AD
c
=A
M
,試以
a
b
,
c
為基向量表示出向量
BN
,并求BN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+sinx,g(x)=x-2;
(1)求證:函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增;
(2)設(shè)P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直線PQ∥x軸,求P,Q兩點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A為不等式組
x≤0
y≥0
y-x≤2
表示的平面區(qū)域,則A的面積為
 
;當(dāng)a的值從-2連續(xù)變化到1時,動直線l:x+y=a掃過的A中的那部分區(qū)域的面積為
 

查看答案和解析>>

同步練習(xí)冊答案