18.已知函數(shù)f(x)=|x|,則下列與函數(shù)y=f(x)相等的函數(shù)是(2)(4);
(1)g(x)=($\sqrt{x}$)2;(2)h(x)=$\sqrt{{x}^{2}}$;(3)s(x)=x;(4)y=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$.

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是相等函數(shù).

解答 解:對于(1),函數(shù)g(x)=($\sqrt{x}$)2=x(x≥0),與函數(shù)f(x)=|x|(x∈R)的定義域不同,不是相等函數(shù);
對于(2),函數(shù)g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),與函數(shù)f(x)=|x|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,是相等函數(shù);
對于(3),函數(shù)s(x)=x(x∈R),與函數(shù)f(x)=|x|(x∈R)的對應(yīng)關(guān)系不相同,不是相等函數(shù);
對于(4),函數(shù)y=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$=|x|(x∈R),與函數(shù)f(x)=|x|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,是相等函數(shù);
綜上,相等的函數(shù)是(2)(4).
故答案為:(2)(4).

點評 本題考查了判斷兩個函數(shù)是相等函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.在三棱錐的六條棱中任意選擇兩條,則這兩條棱有公共點的概率為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.對于實數(shù)a和b,定義運算“*”:a*b=$\left\{\begin{array}{l}{-{a}^{2}+2ab-1,a≤b}\\{^{2}-ab,a>b}\end{array}\right.$,設(shè)f(x)=(2x-1)*(x-1),且關(guān)于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1,x2,x3,則x1•x2•x3的取值范圍是(-$\frac{1}{32}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知f(x)是定義域為R的函數(shù),且滿足f(x+2)=-$\frac{1}{f(x)}$,當2≤x≤3時,f(x)=x+$\frac{1}{2}$,則f(-$\frac{11}{2}$)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知P是△ABC所在平面內(nèi)一點,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,現(xiàn)將一粒紅豆隨機撒在△ABC內(nèi),則紅豆落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,在空間四邊形ABCD中,AB,BC,CD,DA的長和兩條對角線AC,BD都相等,且E為AD的中點,F(xiàn)為BC的中點,則直線BE和平面ADF所成的角的正弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.用0,1,2,3,4,5這6個數(shù)字可以組成多少個沒有重復的4位數(shù)?其中有多少個是2的倍數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=\sqrt{3+2x-{x^2}}$的定義域為A,集合B={x|x2-2mx+m2-9≤0}.
(1)若A∩B=[2,3],求實數(shù)m的值;
(2)若?x1∈A,?x2∈(CRB),使x2=x1,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=asin2x-$\frac{1}{3}$sin3x(a為常數(shù)),在x=$\frac{π}{3}$處取得極值,則a=( 。
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習冊答案