11.若函數(shù)f(x)=f'(1)x3-2x2+3,則f'(2)的值為16.

分析 求函數(shù)的導(dǎo)數(shù),令x=1,先求出f′(1)的值,然后進行計算即可.

解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=3f'(1)x2-4x,
則f′(1)=3f'(1)-4,
則f′(1)=2,
即f′(x)=6x2-4x,
則f′(2)=24-8=16,
故答案為:16

點評 本題主要考查函數(shù)的導(dǎo)數(shù)計算,根據(jù)函數(shù)的導(dǎo)數(shù)公式進行化簡是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知y2=8x的焦點為F,則過F點且傾斜角為60°的直線被拋物線截得的弦長為( 。
A.8B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=$\frac{2-i}{1+i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$在復(fù)平面上所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{3}}{3}$,過F2的直線l交C于A,B兩點,若△AF1B的周長為4$\sqrt{3}$,則C的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,此時橢圓C的一條弦被(1,1)平分,那么這條弦所在的直線方程為2x+3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在圓x2+y2=4上任取一點P,過P作x軸的垂線段,D為垂足,當(dāng)點P在圓上運動時,記線段PD中點M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)$A({-\sqrt{3},0}),B({\sqrt{3},0})$,試判斷(并說明理由)軌跡C上是否存在點Q,使得$\overrightarrow{AQ}•\overrightarrow{BQ}=0$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(1,-2,11),B(4,2,3),C(6,-1,4).則△ABC的面積是( 。
A.$\frac{{5\sqrt{42}}}{2}$B.$5\sqrt{42}$C.$5\sqrt{3}$D.$5\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直三棱柱ABC-A1B1C1中,底面ABC為等邊三角形,CC1=2AC=2.
(Ⅰ)求三棱錐C1-CB1A的體積;
(Ⅱ)在線段BB1上尋找一點F,使得CF⊥AC1,請說明作法和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.四個命題:
①?x∈R,x2-3x+2>0恒成立;
②?x∈Q,x2=2;
③?x∈R,x2-1=0;
④?x∈R,4x2>2x-1+3x2
其中真命題的個數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ),θ∈(0,π)的圖象關(guān)于y軸對稱,則θ=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案