8.長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,則異面直線BC1與AC所成角的余弦值為( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

分析 根據(jù)長方體相對的平面上的兩條對角線平行,得到兩條異面直線所成的角,這個角在一個可以求出三邊的三角形中,利用余弦定理得到結(jié)果.

解答 解:∵A1C1∥AC,
∴異面直線BC1與AC所成角等于A1C1與BC1所成角.
在△BA1C1中,BC1=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,A1C1=$\sqrt{5}$,A1B=2$\sqrt{2}$,
∴cos∠A1C1B=$\frac{5+5-8}{2×\sqrt{5}×\sqrt{5}}$=$\frac{1}{5}$,
故選:B

點評 本題考查異面直線夾角的計算.應(yīng)先依照定義,作出其平面角,再去求解.考查轉(zhuǎn)化、計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的圖象大致是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知棱長為a的正方體ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)為A1B1的中點.
(1)求證:DE⊥C1F;
(2)求異面直線A1C與C1F所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于R上可導(dǎo)的任意函數(shù)f(x),若滿足f(x)=f(2-x),且(x-1)f′(x)≥0,則必有( 。
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的一點,且BF⊥平面ACE,AC與BD交于點G.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面是邊長為a的正方形,PA⊥平面ABCD,PA=a,E為CP中點,
(1)求PB與平面BDE所成的角;
(2)求二面角B-DE-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.關(guān)于函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),x∈R,下列結(jié)論中正確的個數(shù)是( 。
①若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
②函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{12}$對稱;
③函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域為[-$\frac{3}{2},\frac{3}{2}$];
④函數(shù)f(x)的解析式可寫為f(x)=$\sqrt{3}sin(2x+\frac{2π}{3})$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=sinx-\frac{1}{2}x(x∈(-π,π)$的極大值點為(  )
A.$(\frac{π}{3},\frac{{\sqrt{3}}}{2}-\frac{π}{6})$B.$(-\frac{π}{3},\frac{π}{6}-\frac{{\sqrt{3}}}{2})$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“k=1”是“直線y=x+k與圓x2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案