已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),ai+aj與aj-ai至少一個(gè)屬于A,
(1)分別判斷集合M={0,2,4}與N=(1,2,3)是否具有性質(zhì)P,并說明理由;
(2)①求證:0∈A;②當(dāng)n=3時(shí),集合A中元素a1、a2、a3是否一定成等差數(shù)列,若是,請(qǐng)證明;若不是,請(qǐng)說明理由;
(3)對(duì)于集合A中元素a1、a2、…an,若an=2012,求數(shù)列{an}的前n項(xiàng)和Sn(用n表示).
(1)由題意得,
對(duì)于集合M:得2-0=2,4-2=2,4-0=4,0-0=2-2=4-4=0,
∵2,4,0∈M,∴集合具有性質(zhì)P.
對(duì)于集合N:得2+2=4,2-2=0,
∵4,0∉N,∴集合N不具性質(zhì)P,
(2)證明:①∵0≤a1<a2<…<an,n∈N*,n≥3,
∴an+an=2an>an,則an-an=0=a1∈A,
②當(dāng)n=3時(shí),集合A中元素a1,a2,a3一定成等差數(shù)列.
證明:當(dāng)n=3時(shí),0≤a1<a2<a3
∴0≤a3-a3<a3-a2<a3-a1,
且a3+a3>a3,∴a3+a3∉A,∴a3-a3=0∈A,∴a1=0∈A,
則a3+a2>a3,∴a3+a2∉A,∴a3-a2∈A,
∴a3-a2=a2,即a3=2a2,又∵a1=0,∴2a2=a1+a3,
故a1,a2,a3成等差數(shù)列,
(3)由題意得,0≤a1<a2<…<an,∴0≤an-an<an-an-1<…<an-a1,
∴an+an-i>an(i=1,2,…n-1),∴an-an-i∈A,
∴a1=an-an,a2=an-an-1,a3=an-an-2,…an=an-a1,
∴Sn=a1+a2+…+an=nan-(a1+a2+…+an),即Sn=nan-Sn,
則Sn=
n
2
an
=
n
2
×2012
=606n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對(duì)任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對(duì)于n=9,試給出一個(gè)滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對(duì)任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對(duì)于n=11,試給出一個(gè)滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當(dāng)n=108時(shí),l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案