分析 (1)聯(lián)立直線l與直線y=x-1解析式,求出方程組的解得到圓心C坐標(biāo),根據(jù)A坐標(biāo)設(shè)出切線的方程,由圓心到切線的距離等于圓的半徑,列出關(guān)于k的方程,求出方程的解得到k的值,確定出切線方程即可;
(2)求出圓D:x2+y2+2y-3=0的圓心與半徑,利用圓心距與半徑和與差的關(guān)系,列出不等式,即可求出圓心C的橫坐標(biāo)a的取值范圍.
解答 解:(1)聯(lián)立得:$\left\{\begin{array}{l}2x-y-4=0\\ 2x-3y=0\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$,
∴圓心C(3,2).
若k不存在,不合題意;
若k存在,設(shè)切線為:y=kx+3,可得圓心到切線的距離d=r,即$\frac{|3k+3-2|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=0或k=-$\frac{3}{4}$,
則所求切線為y=3或y=-$\frac{3}{4}$x+3;
(2)圓D:x2+y2+2y-3=0的圓心(0,-1),半徑為:2.
圓C的半徑為1,圓心在直線l:2x-y-4=0上,可得圓心(a,2a-4).
圓C與圓D:x2+y2+2y-3=0有公共點(diǎn),可得1≤$\sqrt{(a-0)^{2}+(2a-4+1)^{2}}≤3$,
解得0≤a≤$\frac{12}{5}$.
圓心C的橫坐標(biāo)a的取值范圍:[0,$\frac{12}{5}$].
點(diǎn)評(píng) 此題考查了圓的切線方程,點(diǎn)到直線的距離公式,以及圓與圓的位置關(guān)系的判定,涉及的知識(shí)有:兩直線的交點(diǎn)坐標(biāo),直線的點(diǎn)斜式方程,兩點(diǎn)間的距離公式,圓的標(biāo)準(zhǔn)方程,是一道綜合性較強(qiáng)的試題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{ON}$ | B. | $\overrightarrow{AM}$ | C. | $\overrightarrow{AN}$ | D. | 2$\overrightarrow{AN}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\frac{5}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com