【題目】已知橢圓,過橢圓右頂點和上頂點的直線與圓相切.

(1)求橢圓的方程;

(2)設是橢圓的上頂點,過點分別作直線交橢圓兩點,設這兩條直線的斜率分別為,且,證明:直線過定點.

【答案】(1);(2)證明見解析

【解析】

試題分析:對于問題(1)可以先根據(jù)題目的條件寫出直線方程,再由直線與圓相切,即可求出的值,進而得到橢圓的方程;對于問題(2),首先討論直線的斜率存在與否,當直線斜率存在時可設出直線的方程以及兩點的坐標,聯(lián)立橢圓與直線的方程,并結合韋達定理即可證出直線過定點,再驗證直線的斜率不存在時,直線仍過該定點.

試題解析:(1)直線過點,直線方程為,

直線與圓相切,,解得

橢圓的方程為

(2)當直線的斜率不存在時,設,則,由,得

當直線的斜率存在時,設的方程為,

,

,

,

,,

,

故直線過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),數(shù)列滿足,).

(1)求數(shù)列的通項公式

(2)設,若恒成立求實數(shù)的取值范圍;

(3)是否存在以為首項公比為,)的數(shù)列使得數(shù)列的每一項都是數(shù)列的不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(請選做其中一題)

(1)請推導等差數(shù)列及等比數(shù)列前項和公式;

(2)如果你在海上航行,請設計一種測量海上兩個小島之間距離的方法并作圖說明;

(3)某工廠要建造一個長方形無蓋貯水池,其容積為4800立方米,深為3米,如果池底每平米的造價為150元,池壁每平米造價為120元,怎樣設計水池能使造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,函數(shù)的圖象有三個不同的交點,求實數(shù)的范圍;

2)討論的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過橢圓上一點軸作垂線,垂足為左焦點,分別為的右頂點,上頂點,且,.

1)求橢圓的方程;

2上的兩點,若四邊形逆時針排列)的對角線所在直線的斜率為,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】校高一1班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖

1求分數(shù)在的頻率及全班人數(shù);

2求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;

3若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為

(1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處與直線相切,求的值;

(2)若曲線與直線有兩個不同交點,求的取值范圍.

查看答案和解析>>

同步練習冊答案