從{
1
3
1
2
,2,3
}中隨機(jī)抽取一個(gè)數(shù)記為a,從{-1,1,-2,2}中隨機(jī)抽取一個(gè)數(shù)記為b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是______.
根據(jù)題意,從集合{
1
3
,
1
2
,2,3
}中隨機(jī)抽取一個(gè)數(shù)記為a,有4種情況.
從{-1,1,-2,2}中隨機(jī)抽取一個(gè)數(shù)記為b,有4種情況,則f(x)=ax+b的情況有4×4=16.
函數(shù)f(x)=ax+b的圖象經(jīng)過第三象限,有①當(dāng)a=3、b=-1時(shí),②當(dāng)a=3、b=-2時(shí),③當(dāng)a=4、b=-1時(shí),
④當(dāng)a=4、b=-2時(shí),⑤當(dāng)a=
1
3
,b=-2 時(shí),⑥當(dāng)a=
1
2
,b=-2 時(shí),共6種情況,
則函數(shù)的圖象經(jīng)過第三象限的概率為
6
16
=
3
8

故答案為
3
8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
溫差x(°C) 10 11 13 12 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=bx+a
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
溫差x(°C) 10 11 13 12 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=bx+a

參考公式:
b
=
n
i=1
(xi-
.
x
)  (yi-
.
y
n
i=1
(xi-
.
x
2
=
n
i=1
xi yi-n 
.
x
.
y
n
i=1
x
2
i
-n
-2
x
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)從{
1
3
,
1
2
,2,3
}中隨機(jī)抽取一個(gè)數(shù)記為a,從{-1,1,-2,2}中隨機(jī)抽取一個(gè)數(shù)記為b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是
3
8
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日
溫差x(℃) 10 11 13 12 8
發(fā)芽y(顆) 23 25 30 26 16
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗(yàn).
參考公式:回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi
對(duì)應(yīng)的回歸估計(jì)值.
(Ⅰ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
?
y
=bx+a
;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(Ⅰ)中所得的線性回歸方程是否可靠?
(Ⅲ) 請(qǐng)預(yù)測(cè)溫差為14℃的發(fā)芽數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案