【題目】設y1=loga(3x+1),y2=loga(﹣3x),其中a>0且a≠1.
(1)若y1=y2 , 求x的值;
(2)若y1>y2 , 求x的取值范圍.
【答案】
(1)解:∵y1=y2,即loga(3x+1)=loga(﹣3x),∴3x+1=﹣3x,
解得 ,
經檢驗3x+1>0,﹣3x>0,所以,x=﹣ 是所求的值
(2)解:當0<a<1時,∵y1>y2,即loga(3x+1)>loga(﹣3x),
∴ 解得 .
當a>1時,∵y1>y2,即loga(3x+1)>loga(﹣3x),
∴ 解得 .
綜上,當0<a<1時, ;當a>1時,
【解析】(1)由y1=y2 , 即loga(3x+1)=loga(﹣3x),可得3x+1=﹣3x,由此求得x的值,檢驗可得結論.(2)分當0<a<1時、和當a>1時兩種情況,分別利用對數函數的定義域及單調性,化為與之等價的不等式組,從而求得原不等式的解集.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ﹣
(1)證明函數f(x)是奇函數;
(2)證明函數f(x)在(﹣∞,+∞)內是增函數;
(3)求函數f(x)在[1,2]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}{n=1,2,3…,2015},圓C1:x2+y2﹣4x﹣4y=0,圓C2:x2+y2﹣2anx﹣2a2006﹣ny=0,若圓C2平分圓C1的周長,則{an}的所有項的和為( )
A. 2014 B. 2015 C. 4028 D. 4030
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xsinx,有下列四個結論: ①函數f(x)的圖象關于y軸對稱;
②存在常數T>0,對任意的實數x,恒有f(x+T)=f(x);
③對于任意給定的正數M,都存在實數x0 , 使得|f(x0)|≥M;
④函數f(x)在[0,π]上的最大值是 .
其中正確結論的序號是(請把所有正確結論的序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,若存在x1 , x2 , 當0≤x1<x2<2時,f(x1)=f(x2),則x1f(x2)﹣f(x2)的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)滿足:f(﹣x)+f(x)=ex+e﹣x , 則稱f(x)為“e函數”.
(1)試判斷f(x)=ex+x3是否為“e函數”,并說明理由;
(2)若f(x)為“e函數”且 ,
(。┣笞C:f(x)的零點在 上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設冪函數f(x)=(a﹣1)xk(a∈R,k∈Q)的圖象過點 .
(1)求k,a的值;
(2)若函數h(x)=﹣f(x)+2b +1﹣b在[0,2]上的最大值為3,求實數b的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com