在中,兩直角邊分別為、,設(shè)為斜邊上的高,則,由此類比:三棱錐中的三條側(cè)棱、、兩兩垂直,且長度分別為、、,設(shè)棱錐底面上的高為,則 .
【解析】
試題分析:立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點(diǎn)?點(diǎn)或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.解:∵PA、PB、PC兩兩互相垂直,∴PA⊥平面PBC.由已知有,所以,故可知答案為。
考點(diǎn):類比推理
點(diǎn)評: 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆廣東省汕頭市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題
在中,兩直角邊分別為,設(shè)為斜邊上的高,
則,類比此性質(zhì),如圖,在四面體P—ABC 中,
若PA,PB,PC兩兩垂直,且長度分別為,設(shè)棱錐底面上的高為,則得到的正確結(jié)論為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河南省許昌市高二下學(xué)期聯(lián)考數(shù)學(xué)理卷 題型:填空題
在中,兩直角邊分別為,斜邊上的高為,則。由此類比,在三棱錐中的三條棱兩兩垂直且長度分別為。設(shè)棱錐底面上的高為,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在中,兩直角邊分別為、,設(shè)為斜邊上的高,則,由此類比:三棱錐中的三條側(cè)棱、、兩兩垂直,且長度分別為、、,設(shè)棱錐底面上的高為,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com