已知橢圓的兩焦點(diǎn)為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(Ⅰ)求此橢圓的方程.
(Ⅱ)設(shè)直線y=
x
2
+m
與橢圓交于P,Q兩點(diǎn),且|PQ|的長(zhǎng)等于橢圓的短軸長(zhǎng),求m的值.
(Ⅲ)若直線y=
x
2
+m
與此橢圓交于M,N兩點(diǎn),求線段MN的中點(diǎn)P的軌跡方程.
分析:(I)求橢圓的方程即是求a,b兩參數(shù)的值,由題設(shè)條件橢圓的兩焦點(diǎn)為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2
.求出a,b即可得到橢圓的方程.
(II)本題中知道了直線l:y=
1
2
x+m,若l與此橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長(zhǎng),故可由弦長(zhǎng)公式建立方程求出參數(shù)m的值.首先要將直線方程與橢圓方程聯(lián)立,再利用弦長(zhǎng)公式建立方程;
(III)設(shè)M(x1,y1),N(x2,y2),MN的中點(diǎn)為P(x,y),則x
 
2
1
+4y
 
2
1
=4,x
 
2
2
+4y
 
2
2
=4,利用設(shè)而不求的方法結(jié)合中點(diǎn)坐標(biāo)公式即可求出線段MN的中點(diǎn)P的軌跡方程.
解答:解:(I)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),則c=
3
,
c
a
=
3
2
,(4分)
∴a=2,b=1,所求橢圓方程
x2
4
+y2=1
.(5分)
(II)由
t=
1
2
x+m
x2+4y2=4
,消去y,得x2+2mx+2(m2-1)=0,…(6分)
則△=4m2-8(m2-1)>0得m2<2(*)
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-2m,x1x2=2m2-2,y1-y2=
1
4
(x1-x2)…(7分)
|PQ|=
(x1-x2)2+(y1-y2)2
=
5
2
(x1-x2)2-4x1x2
=
5
2
8-4m2
=
5
2-m2
=2…(9分)
解得,m=±
30
5
,滿足(*)
∴m=±
30
5
.…(10分)
(III)設(shè)M(x1,y1),N(x2,y2),MN的中點(diǎn)為P(x,y),
則x
 
2
1
+4y
 
2
1
=4,x
 
2
2
+4y
 
2
2
=4,又x1+x2=2x,y1+y2=2y,
y1-y2
x1-x2
=
1
2

∴x+2y=0,因P在橢圓的內(nèi)部,可求得-
2
<x<
2
,
∴線段MN的中點(diǎn)P的軌跡方程為x+2y=0,(-
2
<x<
2
).
點(diǎn)評(píng):本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),直線方程,曲線和方程的關(guān)系等解析幾何的基本思想方法和綜合解題能力.解答的關(guān)鍵是利用方程思想利用設(shè)而不求的方法求出m值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省惠州一中高三(上)數(shù)學(xué)寒假作業(yè)5(理科)(解析版) 題型:選擇題

已知橢圓的左焦點(diǎn)為F,A(-a,0),B(0,b)為橢圓的兩個(gè)頂點(diǎn),若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年寧夏銀川一中高三(下)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過(guò)定點(diǎn)().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年高二(上)周考數(shù)學(xué)試卷(10)(解析版) 題型:選擇題

已知橢圓的左焦點(diǎn)為F,A(-a,0),B(0,b)為橢圓的兩個(gè)頂點(diǎn),若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過(guò)定點(diǎn)().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第61課時(shí)):第八章 圓錐曲線方程-橢圓(解析版) 題型:選擇題

已知橢圓的左焦點(diǎn)為F,A(-a,0),B(0,b)為橢圓的兩個(gè)頂點(diǎn),若F到AB的距離等于,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案