8.求值:sin$\frac{π}{2}$tan$\frac{π}{3}$+cos2$\frac{π}{6}$+sin$\frac{3π}{2}$tan$\frac{π}{4}$+cosπsin$\frac{π}{3}$+$\frac{3}{4}$tan2$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.

分析 直接利用特殊角的三角函數(shù)值求解即可.

解答 解:sin$\frac{π}{2}$tan$\frac{π}{3}$+cos2$\frac{π}{6}$+sin$\frac{3π}{2}$tan$\frac{π}{4}$+cosπsin$\frac{π}{3}$+$\frac{3}{4}$tan2$\frac{π}{6}$
=$1×\sqrt{3}+$${(\frac{\sqrt{3}}{2})}^{2}$+(-1)×1$+(-1)×\frac{\sqrt{3}}{2}$$+\frac{3}{4}×{(\frac{\sqrt{3}}{3})}^{2}$
=$\sqrt{3}+\frac{3}{4}-1-\frac{\sqrt{3}}{2}+\frac{1}{4}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查特殊角的三角函數(shù)的值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.冪函數(shù)y=xa,y=xb,y=xc,y=xd在第一象限的圖象如圖所示,則a,b,c,d的大小關(guān)系是 ( 。
A.a>b>c>dB.d>b>c>aC.d>c>b>aD.b>c>d>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,圓O:x2+y2=1,P為直線l:x=t(1<t<2)上一點.設(shè)直線l與x軸交于點M,線段OM的中點為Q.R為圓O上一點,且RM=1,直線RM與圓O交于另一點N,則線段NQ長的最小值為$\frac{\sqrt{14}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x|x|.若對任意的x≥1有f(x+m)+mf(x)<0,則實數(shù)m的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin(-$\frac{10}{3}$π)的值等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5},則A∩∁UB等于( 。
A.{2,5}B.{1,3,5}C.{2,4,5}D.{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四組函數(shù)中,表示同一函數(shù)的是(  )
A.y=$\sqrt{{x}^{2}}$與y=xB.y=${2}^{{\frac{1}{2}log}_{2}x}$與y=$\frac{x}{\sqrt{x}}$
C.y=x0與y=1D.y=x與y=2lg$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x.
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的最值;
(3)指出函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知當(dāng)x=4時,函數(shù)y=x2+px+q有最小值-3.
(1)求p、q的值;
(2)寫出函數(shù)y=-x2+(q-3)x+p的對稱軸方程、頂點坐標(biāo)及函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案