一直線經(jīng)過(guò)點(diǎn)P(-3,-
32
)
被圓x2+y2=25截得的弦長(zhǎng)為8,則此弦所在直線方程為
x+3=0或3x+4y+15=0
x+3=0或3x+4y+15=0
分析:由圓的方程找出圓心的坐標(biāo)及半徑,由直線被圓截得的弦長(zhǎng),利用垂徑定理得到弦的一半,弦心距及圓的半徑構(gòu)成直角三角形,再根據(jù)勾股定理求出弦心距,一下分兩種情況考慮:若此弦所在直線方程的斜率不存在,顯然x=-3滿(mǎn)足題意;若斜率存在,設(shè)出斜率為k,由直線過(guò)P點(diǎn),由P的坐標(biāo)及設(shè)出的k表示出直線的方程,利用點(diǎn)到直線的距離公式表示出圓心到所設(shè)直線的距離d,讓d等于求出的弦心距列出關(guān)于k的方程,求出方程的解得到k的值,進(jìn)而得到所求直線的方程,綜上,得到所有滿(mǎn)足題意的直線方程.
解答:解:由圓的方程,得到圓心坐標(biāo)為(0,0),半徑r=5,
∵直線被圓截得的弦長(zhǎng)為8,
∴弦心距=
52-42
=3,
若此弦所在的直線方程斜率不存在時(shí),顯然x=-3滿(mǎn)足題意;
若此弦所在的直線方程斜率存在,設(shè)斜率為k,
∴所求直線的方程為y+
3
2
=k(x+3),
∴圓心到所設(shè)直線的距離d=
|3k-
3
2
|
1+k2
=3,
解得:k=-
3
4
,
此時(shí)所求方程為y+
3
2
=-
3
4
(x+3),即3x+4y+15=0,
綜上,此弦所在直線的方程為x+3=0或3x+4y+15=0.
故答案為:x+3=0或3x+4y+15=0
點(diǎn)評(píng):此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有垂徑定理,勾股定理,點(diǎn)到直線的距離公式,以及直線的斜截式方程,利用了分類(lèi)討論的思想,當(dāng)直線與圓相交時(shí),常常由弦心距,弦的一半及圓的半徑構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一直線經(jīng)過(guò)點(diǎn)P(-3,-
32
)被圓x2+y2=25截得的弦長(zhǎng)為8,求此弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一直線經(jīng)過(guò)點(diǎn)P(-3,-數(shù)學(xué)公式)被圓x2+y2=25截得的弦長(zhǎng)為8,求此弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一直線經(jīng)過(guò)點(diǎn)P(-3,-
3
2
)被圓x2+y2=25截得的弦長(zhǎng)為8,求此弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《3.4 直線、圓的位置關(guān)系優(yōu)化訓(xùn)練》2013年高考數(shù)學(xué)優(yōu)化訓(xùn)練(解析版) 題型:解答題

一直線經(jīng)過(guò)點(diǎn)P(-3,-)被圓x2+y2=25截得的弦長(zhǎng)為8,求此弦所在直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案