已知拋物線x2=y,則它的準(zhǔn)線方程為( 。
A、x=
1
4
B、x=-
1
4
C、y=
1
4
D、y=-
1
4
分析:根據(jù)拋物線方程求得p,判斷焦點(diǎn)在y軸,進(jìn)而根據(jù)拋物線的性質(zhì)可求得準(zhǔn)線方程.
解答:解:由拋物線方程可知p=
1
4
,焦點(diǎn)在y軸
∴準(zhǔn)線方程為y=-
1
4

故選D
點(diǎn)評(píng):本題主要考查了拋物線的簡單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=y+1上一定點(diǎn)A(-1,0)和兩動(dòng)點(diǎn)P,Q當(dāng)PA⊥PQ時(shí),點(diǎn)Q的橫坐標(biāo)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=y+1上一定點(diǎn)A(-1,0)和兩動(dòng)點(diǎn)P,Q,當(dāng)PA⊥PQ時(shí),點(diǎn)Q的橫坐標(biāo)的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•金華模擬)已知拋物線x2=y,O為坐標(biāo)原點(diǎn).
(Ⅰ)過點(diǎn)O作兩相互垂直的弦OM,ON,設(shè)M的橫坐標(biāo)為m,用n表示△OMN的面積,并求△OMN面積的最小值;
(Ⅱ)過拋物線上一點(diǎn)A(3,9)引圓x2+(y-2)2=1的兩條切線AB,AC,分別交拋物線于點(diǎn)B,C,連接BC,求直線BC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=y上一點(diǎn)A到準(zhǔn)線的距離為,則A到頂點(diǎn)的距離等于________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案