8.已知函數(shù)f(x)=2cos2$\frac{ωx}{2}$+cos(ωx+$\frac{π}{3}$),(其中ω>0)的最小正周期為π,在銳角△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=-$\frac{1}{2}$,c=3,△ABC的面積為6$\sqrt{3}$,則△ABC的外接圓面積為( 。
A.45πB.49πC.D.$\frac{49π}{3}$

分析 先根據(jù)條件進(jìn)行三角恒等變換,再運(yùn)用余弦等定理,面積公式,正弦定理解三角形,最后求外接圓的面積.

解答 解:根據(jù)題意得f(x)=1+cosωx+$\frac{1}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx=1+$\frac{3}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx=1-$\sqrt{3}$sin(ωx-$\frac{π}{3}$),
∵函數(shù)f(x)的最小正周期為π,且ω>0,∴$\frac{2π}{ω}$=π,解得ω=2,
∴f(x)=1-$\sqrt{3}$sin(2x-$\frac{π}{3}$),
f(A)=1-$\sqrt{3}$sin(2A-$\frac{π}{3}$)=-$\frac{1}{2}$,即sin(2A-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴2A-$\frac{π}{3}$=$\frac{π}{3}$或$\frac{2π}{3}$,即A=$\frac{π}{3}$或$\frac{π}{2}$,
∵△ABC為銳角三角形,∴A=$\frac{π}{3}$,
∵c=3,S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×3b×$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$,解得b=8,
由余弦定理得:a2=b2+c2-2bccosA=64+9-24=49,解得a=7,
再根據(jù)正弦定理,2R=$\frac{a}{sinA}$=$\frac{14}{\sqrt{3}}$,所以,R=$\frac{7}{\sqrt{3}}$,
所以,三角形外接圓的面積為:$\frac{49π}{3}$,
故選:D.

點評 本題主要考查了運(yùn)用正弦定理,余弦定理解三角形,涉及三角恒等變換,面積公式,三角函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+x,正項數(shù)列{an}前n項和為Sn,且點(an,2Sn)(n∈N*)在f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=(-1)nan(n∈N*),求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合S={x|-1<x<1},在S中定義一種運(yùn)算“*”,當(dāng)a,b∈S時,a*b=$\frac{a+b}{1+ab}$.
(1)求證:a*b=S;
(2)求證:(a*b)*c=a*(b*c)(a,b,c∈S)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$;
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x$∈[0,\frac{7π}{24}]$時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,建造一個容積為16m3,深為2m,寬為2m的長方體無蓋水池,如果池底的造價為120元/m2,池壁的造價為80元/m2,求水池的總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)$f(x)=sin(\frac{π}{4}x-\frac{π}{6})-cos\frac{π}{4}$x.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若x∈(0,4),求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?α,β>0,sin(α+β)=sinα+sinβ,命題q:?x∈R,x0=1,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.(¬p)∧q是真命題D.p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某校共有學(xué)生2000人,其中高三學(xué)生500人,現(xiàn)用分層抽樣法人該校抽取200人的一個樣本,則樣本中高三學(xué)生的人數(shù)是50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)$f(x)=\sqrt{x+1}+{(2-x)^0}$的定義域為{x|x≥-1,且x≠2}.

查看答案和解析>>

同步練習(xí)冊答案